Exercise-induced changes of MCT1 in cardiac and skeletal muscles of diabetic rats induced by high-fat diet and STZ

2013 ◽  
Vol 69 (4) ◽  
pp. 865-877 ◽  
Author(s):  
Rohollah Nikooie ◽  
Hamid Rajabi ◽  
Reza Gharakhanlu ◽  
Fereshteh Atabi ◽  
Kobra Omidfar ◽  
...  
2015 ◽  
Vol 41 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Hui Wu ◽  
Chunhua Sui ◽  
Fangzhen Xia ◽  
Hualing Zhai ◽  
Huixin Zhang ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Ginpreet Kaur ◽  
Meena C

Curcumin is an important nutraceutical that has enormous potential for a variety of diseases, but the medicinal properties of curcumin cannot be utilized due to its low in vivo bioavailability. Therefore, in view of the foregoing, there is an extensive need for combinatorial extract “curcumin with piperine and quercetin” which may enhance bioavailability of oral curcumin by inhibiting the enzymes responsible for the metabolism of curcumin. Thus, the present study investigated the effect of combinatorial extract of curcumin on obesity, glucose intolerance, and oxidative stress in high fat diet and low-dose streptozotocin-induced rats. Oral administration of combinatorial extract for 28 days significantly () reduced PGL (64.84%), PTG (88.94%), LDL (26.38%) and PTC (50.23%) levels, respectively and improved glucose tolerance () significantly to exogenously administered glucose (2 g/kg) at 60, 90, and 120 min interval on OGTT. The results for antioxidant potential indicate that at 100 mg/kg dose of combinatorial extract of curcumin significantly prevented the high-fat diet and low-dose streptozotocin-induced changes in the oxidative stress parameters () which supports popular medicinal uses of this combinatorial extract as antihyperglycemic and hypolipidemic and is likely to bring this promising natural product to the forefront of therapeutic agents in the in the treatment of “metabolic syndrome”.


2019 ◽  
Vol 89 (1-2) ◽  
pp. 45-54
Author(s):  
Akemi Suzuki ◽  
André Manoel Correia-Santos ◽  
Gabriela Câmara Vicente ◽  
Luiz Guillermo Coca Velarde ◽  
Gilson Teles Boaventura

Abstract. Objective: This study aimed to evaluate the effect of maternal consumption of flaxseed flour and oil on serum concentrations of glucose, insulin, and thyroid hormones of the adult female offspring of diabetic rats. Methods: Wistar rats were induced to diabetes by a high-fat diet (60%) and streptozotocin (35 mg/kg). Rats were mated and once pregnancy was confirmed, were divided into the following groups: Control Group (CG): casein-based diet; High-fat Group (HG): high-fat diet (49%); High-fat Flaxseed Group (HFG): high-fat diet supplemented with 25% flaxseed flour; High-fat Flaxseed Oil group (HOG): high-fat diet, where soya oil was replaced with flaxseed oil. After weaning, female pups (n = 6) from each group were separated, received a commercial rat diet and were sacrificed after 180 days. Serum insulin concentrations were determined by ELISA, the levels of triiodothyronine (T3), thyroxine (T4) and thyroid-stimulating hormone (TSH) were determined by chemiluminescence. Results: There was a significant reduction in body weight at weaning in HG (−31%), HFG (−33%) and HOG (44%) compared to CG (p = 0.002), which became similar by the end of 180 days. Blood glucose levels were reduced in HFG (−10%, p = 0.044) when compared to CG, and there was no significant difference between groups in relation to insulin, T3, T4, and TSH after 180 days. Conclusions: Maternal severe hyperglycemia during pregnancy and lactation resulted in a microsomal offspring. Maternal consumption of flaxseed reduces blood glucose levels in adult offspring without significant effects on insulin levels and thyroid hormones.


2016 ◽  
Vol 24 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Weixiu Ji ◽  
Lijing Gong ◽  
Jianxiong Wang ◽  
Hui He ◽  
Ying Zhang

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 464 ◽  
Author(s):  
Bright Asare-Bediako ◽  
Sunil Noothi ◽  
Sergio Li Calzi ◽  
Baskaran Athmanathan ◽  
Cristiano Vieira ◽  
...  

We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C Bo-Htay ◽  
T Shwe ◽  
S Palee ◽  
T Pattarasakulchai ◽  
K Shinlapawittayatorn ◽  
...  

Abstract Background D-galactose (D-gal) induced ageing has been shown to exacerbate left ventricular (LV) dysfunction via worsening of apoptosis and mitochondrial dysfunction in the heart of obese rats. Hyperbaric oxygen therapy (HBOT) has been demonstrated to exert anti-inflammatory and anti-apoptotic effects in multiple neurological disorders. However, the cardioprotective effect of HBOT on inflammation, apoptosis, LV and mitochondrial functions in D-gal induced ageing rats in the presence of obese-insulin resistant condition has never been investigated. Purpose We sought to determine the effect of HBOT on inflammation, apoptosis, mitochondrial functions and LV function in pre-diabetic rats with D-gal induced ageing. We hypothesized that HBOT attenuates D-gal induced cardiac mitochondrial dysfunctions and reduces inflammation and apoptosis, leading to improved LV function in pre-diabetic rats. Methods Forty-eight male Wistar rats were fed with either normal diet or high-fat diet for 12 weeks. Then, rats were treated with either vehicle groups (0.9% NSS, subcutaneous injection (SC)) or D-gal groups (150 mg/kg/day, SC) for 8 weeks. At week 21, rats in each group were equally divided into 6 sub-groups: normal diet fed rats treated with vehicle (NDV) sham, normal diet fed rats treated with D-gal (NDDg) sham, high fat diet fed rats treated with D-gal (HFDg) sham, high fat diet fed rats treated with vehicle (HFV) + HBOT, NDDg + HBOT and HFDg + HBOT. Sham treated rats were given normal concentration of O2 (flow rate of 80 L/min, 1 ATA for 60 minutes), whereas HBOT treated rats were subjected to 100% O2 (flow rate of 250 L/min, 2 ATA for 60 minutes), given once daily for 2 weeks. Results Under obese-insulin resistant condition, D-gal-induced ageing aggravated LV dysfunction (Fig 1A) and impaired cardiac mitochondrial function, increased cardiac inflammatory and apoptotic markers (Fig 1B). HBOT markedly reduced cardiac TNF-α level and TUNEL positive apoptotic cells, and improved cardiac mitochondrial function as indicated by decreased mitochondrial ROS production, mitochondrial depolarization and mitochondrial swelling, resulting in the restoration of the normal LV function in HFV and NDDg rats, compared to sham NDDg rats. In addition, in HFDg treated rats, HBOT attenuated cardiac TNF-α level, TUNEL positive apoptotic cells and cardiac mitochondrial dysfunction, compared to sham HFDg rats, leading to improved cardiac function as indicated by increased %LV ejection fraction (LVEF) (Figure 1). Conclusion HBOT efficiently alleviates D-gal-induced-age-related LV dysfunction through mitigating inflammation, apoptosis and mitochondrial dysfunction in pre-diabetic rats. Figure 1 Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): 1. The National Science and Technology Development Agency Thailand, 2. Thailand Research Fund Grants


2014 ◽  
Vol 92 (5) ◽  
pp. 405-417 ◽  
Author(s):  
Xian-Wei Li ◽  
Yan Liu ◽  
Wei Hao ◽  
Jie-Ren Yang

Sequoyitol decreases blood glucose, improves glucose intolerance, and enhances insulin signaling in ob/ob mice. The aim of this study was to investigate the effects of sequoyitol on diabetic nephropathy in rats with type 2 diabetes mellitus and the mechanism of action. Diabetic rats, induced with a high-fat diet and a low dose of streptozotocin, and were administered sequoyitol (12.5, 25.0, and 50.0 mg·(kg body mass)−1·d−1) for 6 weeks. The levels of fasting blood glucose (FBG), serum insulin, blood urea nitrogen (BUN), and serum creatinine (SCr) were measured. The expression levels of p22phox, p47phox, NF-κB, and TGF-β1 were measured using immunohistochemisty, real-time PCR, and (or) Western blot. The total antioxidative capacity (T-AOC), as well as the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were also determined. The results showed that sequoyitol significantly decreased FBG, BUN, and SCr levels, and increased the insulin levels in diabetic rats. The level of T-AOC was significantly increased, while ROS and MDA levels and the expression of p22phox, p47phox, NF-κB, and TGF-β1 were decreased with sequoyitol treatment both in vivo and in vitro. These results suggested that sequoyitol ameliorates the progression of diabetic nephropathy in rats, as induced by a high-fat diet and a low dose of streptozotocin, through its glucose-lowering effects, antioxidant activity, and regulation of TGF-β1 expression.


Sign in / Sign up

Export Citation Format

Share Document