Critical Research Gaps for Understanding Environmental Impacts of Discharging Treated Municipal Wastewater into Assimilation Wetlands

Wetlands ◽  
2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Taylor M. Sloey ◽  
Brian J. Roberts ◽  
Skyler R. Flaska ◽  
James A. Nelson
Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1200
Author(s):  
Muhammad Jawad Sajid ◽  
Muhammad Habib ur Rahman

Agriculture has a substantial environmental impact. However, little research has been conducted on the relationship between agriculture’s environmental impacts and linkages, particularly for the key agriculture-based Pakistani economy. Additionally, the literature on environmental linkages rarely estimates multiple types of linkages in a single study. This study fills these critical research gaps. The study estimates the land, water, nitrogen, and CO2 impacts and linkages of Pakistan’s agriculture sector using an input–output model and the hypothetical extraction method. The results indicated that agriculture directly accounted for approximately 27%, 93%, 92%, and 1% of Pakistan’s total sectoral land, water, nitrogen, and CO2 impacts (LWNC), respectively. While the sector indirectly contributed almost 2%, 0.3%, 0.4%, and 0.4% of Pakistan’s total LWNC. The bulk of direct LWNC impacts were caused by agricultural purchases from downstream sectoral importers. The majority of the indirect LWNC impacts were induced by agriculture’s re-imports. The agricultural purchases from the downstream sector of “Food and Beverages” induced the greatest environmental impact. To ensure sustainable agriculture, particularly in Pakistan, the agriculture sector’s direct and indirect environmental impacts should be reduced not only through better management practices and technology, but also by focusing on intermediate sectoral sources of direct and indirect environmental impacts.


2015 ◽  
Vol 72 (4) ◽  
pp. 579-584 ◽  
Author(s):  
A. Muramatsu ◽  
H. Ito ◽  
A. Sasaki ◽  
A. Kajihara ◽  
T. Watanabe

To achieve enhanced nitrogen removal, we modified a cultivation system with circulated irrigation of treated municipal wastewater by using rice for animal feed instead of human consumption. The performance of this modified system was evaluated through a bench-scale experiment by comparing the direction of circulated irrigation (i.e. passing through paddy soil upward and downward). The modified system achieved more than three times higher nitrogen removal (3.2 g) than the system in which rice for human consumption was cultivated. The removal efficiency was higher than 99.5%, regardless of the direction of circulated irrigation. Nitrogen in the treated municipal wastewater was adsorbed by the rice plant in this cultivation system as effectively as chemical fertilizer used in normal paddy fields. Circulated irrigation increased the nitrogen released to the atmosphere, probably due to enhanced denitrification. Neither the circulation of irrigation water nor its direction affected the growth of the rice plant and the yield and quality of harvested rice. The yield of rice harvested in this system did not reach the target value in normal paddy fields. To increase this yield, a larger amount of treated wastewater should be applied to the system, considering the significant amount of nitrogen released to the atmosphere.


2015 ◽  
Vol 17 (1) ◽  
pp. 148-161

<div> <p>Two greenhouse pot experiments were conducted in Agrinion, Greece. The impact of treated municipal wastewater (TMWW) and sludge (i) on the growth of <em>Lactuca sativa</em> L. var Longifolia (lettuce) and (ii) on the extent of soil pollution with heavy metals was studied. Soil pollution was assessed by calculating the Pollution Load Index (PLI). Both of these experiments were conducted, using a randomized block design in four replications and seven treatments, respectively, as follows: (a) Experiment A: study of the effect of treated municipal wastewater (TMWW): [Control, 20%, 40%, 60%, 80%, 100%, (100%+30 t/ha Sludge)] and (b) Experiment B: Study of the effect of sludge (t/ha): 0, &nbsp;6, 12,&nbsp; 18, 24 , 30, (30+100%TMWW). The sludge affected significantly plant height and fresh and dry matter yield, as well as the dry matter N content of plants, while the TMWW affected significantly the dry matter yield and non-significantly the plant height. The pollution load index (PLI) was non-significant for both treatments (sludge and TMWW). According to PLI calibration scale, the soil was found to be slightly polluted with heavy metals under both treatments.</p> </div> <p>&nbsp;</p>


2020 ◽  
Vol 24 ◽  
Author(s):  
Ismael Leonardo Vera-Puerto ◽  
Jorge Leonardo Olave-Vera ◽  
Sussy Tapia ◽  
Wladimir Antonio Chávez ◽  
Carlos Arias

The aim of this work is to evaluate the reuse of municipal wastewaters treated through subsurface constructed wetlands (SS-CWs) as irrigation water in cut flower aeroponic cultivation under arid conditions. For this purpose, two experimental aeroponic cultivation systems were installed with the cut flower Lilium ‘Tresor’ planted and irrigated with SS-CWs treated water. The results showed that the quality of the SS-CWs wastewater has to be improved to be used in irrigation. Despite that, Lilium ‘Tresor’ grew under arid conditions with normal stem diameters and number of flowers but with heights under 0.65 m, which would restrict their commercialization to local markets. Water electrical conductivity (> 2300 µs/cm) and luminosity (> 120 klux) were factors that affected plant height. When compared to other cultivation systems, the aeroponic cultivation system used between 10 % and 20 % of the amount of water needed to produce Lilium ‘Tresor.’ Thus, this work showed the feasibility to produce cut flowers using an aeroponic cultivation system under arid conditions and irrigated with SS-CWs effluents. Likewise, it was detected that improvements to water quality and luminosity must be made for industrial scaling.


Sign in / Sign up

Export Citation Format

Share Document