scholarly journals Insoluble dietary fiber from soy hulls regulates the gut microbiota in vitro and increases the abundance of bifidobacteriales and lactobacillales

2019 ◽  
Vol 57 (1) ◽  
pp. 152-162 ◽  
Author(s):  
Lina Yang ◽  
Yafan Zhao ◽  
Jinghang Huang ◽  
Hongyun Zhang ◽  
Qian Lin ◽  
...  
LWT ◽  
2021 ◽  
pp. 112560
Author(s):  
Li Li ◽  
Yafan Zhao ◽  
Jiaqi Li ◽  
Lanzhen Ban ◽  
Lina Yang ◽  
...  

LWT ◽  
2021 ◽  
Vol 142 ◽  
pp. 111008
Author(s):  
Tengnu Liu ◽  
Kang Wang ◽  
Wei Xue ◽  
Li Wang ◽  
Congnan Zhang ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4739 ◽  
Author(s):  
Mariem Haj Romdhane ◽  
Hassiba Chahdoura ◽  
Lillian Barros ◽  
Maria Inês Dias ◽  
Rúbia Carvalho Gomes Corrêa ◽  
...  

The aim of this work was to perform an unprecedented in-depth study on the bioactive phytochemicals of Abelmoschus esculentus L. Moench Tunisian landrace (Marsaouia). For this purpose, its nutritional, aroma volatile, and phenolic profiles were characterized, and sundry biological activities were assessed in vitro. The approximate composition revealed that total dietary fiber as the most abundant macronutrient, mainly insoluble dietary fiber, followed by total carbohydrates and proteins. In addition, okra pods were rich in K, Ca, Mg, organic acids, tocopherols, and chlorophylls. Gas Chromatography-Electron Impact Mass Spectrometry (GC-EIMS) analysis showed that oxygenated monoterpenes, sesquiterpene hydrocarbons, and phenylpropanoids were the predominant essential volatile components in A. esculentus pods. A total of eight flavonols were detected by High-Performance Liquid Chromatography coupled to a DAD detector and mass spectrometry by electrospray ionization (HPLC-DAD-MS/ESI); with quercetin-3-O-glucoside being the majority phenolic component, followed by quercetin-O-pentosyl-hexoside and quercetin-dihexoside. This pioneering study, evidences that Tunisian okra display promising antioxidant and cytotoxic actions, in addition to relevant inhibitory effects against α-amylase and α-glucosidase enzymes, and interesting analgesic activity.


2010 ◽  
Vol 82 (2) ◽  
pp. 419-423 ◽  
Author(s):  
Jing Wang ◽  
Baoguo Sun ◽  
Yanping Cao ◽  
Chengtao Wang

2021 ◽  
Vol 12 ◽  
Author(s):  
Irene Tomé-Sánchez ◽  
Ana Belén Martín-Diana ◽  
Elena Peñas ◽  
Juana Frias ◽  
Daniel Rico ◽  
...  

To enlarge the applications of whole wheat grain (WWG) and wheat bran (WB) as functional ingredients in foodstuffs that can promote human health, researchers have explored bioprocessing approaches to improve the bioaccessibility of phenolic compounds from these food matrices and, subsequently, their biological effects. The objective of this study was to compare the composition in nutrients, anti-nutrients, and bioactive compounds of WWG and WB, and their respective bioprocessed products: sprouted wheat (GERM) and WB hydrolysate (stabilized by spray-drying [SPD] and microencapsulated [MEC]). In addition, to evaluate the functional properties of these ingredients, the bioaccessibility of phenolic compounds and their potential antioxidant and anti-inflammatory activities were monitored in different digestion steps. GERM had increased amounts of insoluble dietary fiber, higher diversity of oligosaccharides, and higher concentration of monosaccharides, free phosphorous, and phenolic compounds than WWG. SPD had improved content of soluble dietary fiber, oligosaccharides, monosaccharides, free phosphorous, and phenolic compounds (vs. WB), whereas MEC was mainly composed of protein and had nearly 2-fold lower content of SPD components. All the ingredients showed lower amounts of phytic acid as compared with raw materials. In all samples, hydroxycinnamic acids were the most representative polyphenols followed by minor amounts of hydroxybenzoic acids and flavonoids. Gastrointestinal digestion of GERM, SPD, and MEC revealed high stability of total phenolic compounds in both gastric and intestinal phases. Hydroxycinnamic acids were the most bioaccessible compounds during digestion among the three bioprocessed wheat ingredients studied, although their bioaccessibility varied across ingredients. In this sense, the bioaccessibility of ferulic acid (FA) derivatives increased in GERM with progression of the digestion, while it was reduced in SPD and MEC up to the end of the intestinal phase. Microencapsulation of SPD with pea protein led to generally to lower bioaccessible amounts of phenolic acids. Comparison analysis of biological effects highlighted SPD for its most potent antioxidant effects in the gastrointestinal tract (3 out 4 antioxidant parameters with highest values), while no clear differences were observed with regard to in vitro anti-inflammatory activity. Overall, these results support the potential application of GERM, SPD, and MEC as functional and nutraceutical ingredients.


2017 ◽  
Vol 27 (4) ◽  
pp. 856-867 ◽  
Author(s):  
Shimin Chang ◽  
Xingtian Cui ◽  
Mingzhang Guo ◽  
Yiling Tian ◽  
Wentao Xu ◽  
...  

2022 ◽  
Author(s):  
Ying Li ◽  
Wei Liang ◽  
Wuyang Huang ◽  
Meigui Huang ◽  
Jin Feng

Holocellulose nanocrystals (hCNCs), with hydrodynamic diameters (DZ) ranging from about 600 to 200 nm, were prepared by treating burdock insoluble dietary fiber (IDF) with enzymes and ultrasonic power. It was...


Sign in / Sign up

Export Citation Format

Share Document