scholarly journals A 3D geological model of a structurally complex relationships of sedimentary Facies and Petrophysical Parameters for the late Miocene Mount Messenger Formation in the Kaimiro-Ngatoro field, Taranaki Basin, New Zealand

Author(s):  
Surya Tejasvi Thota ◽  
Md Aminul Islam ◽  
Mohamed Ragab Shalaby

AbstractThe present study investigates the reservoir characteristics of the Mount Messenger Formation of Kaimiro-Ngatoro Field which was deposited in deep-water environment. A 3D seismic dataset, core data and well data from the Kaimiro-Ngatoro Field were utilized to identify lithofacies, sedimentary structures, stratigraphic units, depositional environments and to construct 3D geological models. Five different lithologies of sandstone, sandy siltstone, siltstone, claystone and mudstone are identified from core photographs, and also Bouma sequence divisions are also observed. Based on log character Mount Messenger Formation is divided into two stratigraphic units slope fans and basin floor fans; core analysis suggests that basin floor fans show better reservoir qualities compared to slope fan deposits. Seismic interpretation indicates 2 horizons and 11 faults, majority of faults have throw less than 10 m, and most of the faults have high angle dips of 70–80°. The Kaimiro and Ngatoro Fields are separated by a major Inglewood fault. Variance attribute helped to interpret faults, and other seismic attributes such as root-mean-square amplitude, envelope and generalized spectral decomposition also helped to detect hydrocarbons. The lithofacies model was constructed by using sequential simulation indicator algorithm, and the petrophysical models were constructed using sequential Gaussian simulation algorithm. The petrophysical parameters determined from the models comprised of  up to ≥ 25% porosity, permeability up to around 600mD, hydrocarbon saturation up to 60%, net to gross varies from 0 to 100%, majority of shale volumes are around 15–20%, the study interval mostly consists of macropores with some megapores and 4 hydraulic flow units. This study best characterizes the deep-water turbidite reservoir in New Zealand.

1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


1988 ◽  
Vol 62 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


2020 ◽  
Vol 500 (1) ◽  
pp. 147-171 ◽  
Author(s):  
Suzanne Bull ◽  
Greg H. Browne ◽  
Malcolm J. Arnot ◽  
Lorna J. Strachan

AbstractThree-dimensional (3D) seismic data reveal the complex interplay between the surface topography of a c. 4405 km3 mass transport deposit (MTD) and overlying sedimentary packages over approximately the last two million years. The data image part of the Pleistocene to recent shelf to slope to basin-floor Giant Foresets Formation in offshore western New Zealand. The MTD created substantive topographic relief and rugosity at the contemporaneous seabed, formed by the presence of a shallow basal detachment surface, and very large (up to 200 m high) intact slide blocks, respectively. Sediments were initially deflected away from high-relief MTD topography and confined in low areas. With time, the MTD was progressively healed by a series of broadly offset-stacked and increasingly unconfined packages comprised of many channel bodies and their distributary complexes. Positive topography formed by the channels and their distributary complexes further modified the seafloor and influenced the location of subsequent sediment deposition. Channel sinuosity increased over time, interpreted as the result of topographic healing and reduced seafloor gradients. The rate of sediment supply is likely to have been non-uniform, reflecting tectonic pulses across the region. Sediments were routed into deep water via slope-confined channels that originated shortly before emplacement of the MTD.


Author(s):  
Clayton Silver ◽  
Heather Bedle

A long-standing problem in the understanding of deep-water turbidite reservoirs relates to how the three-dimensional evolution of deep-water channel systems evolve in response to channel filling on spatio-temporal scales, and how depositional environments affect channel architecture. The 3-D structure and temporal evolution of late Miocene deep-water channel complexes in the southern Taranaki Basin, New Zealand is investigated, and the geometry, distribution and stacking patterns of the channel complexes are analyzed. Two recently acquired 3-D seismic datasets, the Pipeline-3D (proximal) and Hector-3D (distal) are analyzed. These surveys provide detailed imaging of late Miocene deep-water channel systems, allowing for the assessment of the intricate geometry and seismic geomorphology of the systems. Seismic attributes resolve the channel bodies and the associated architectural elements. Spectral decomposition, amplitude curvature, and coherence attributes reveal NW-trending straight to low-sinuosity channels and less prominent NE-trending high-sinuosity feeder channels. Stratal slices across the seismic datasets better characterize the architectural elements. The mapped turbidite systems transition from low-sinuosity to meandering high-sinuosity patterns, likely caused by a change in the shelf-slope gradient due to localized structural relief. Stacking facies patterns within the channel systems reveal the temporal variation from a depositional environment characterized by sediment bypass to vertically aggrading channel systems.


2021 ◽  
pp. 19-48
Author(s):  
Gwladys T. Gaillot* ◽  
Michael L. Sweet ◽  
Manasij Santra

ABSTRACT The Eocene Tyee Formation of west central Oregon, USA, records deposition in a forearc basin. With outcrop exposures of fluvial/deltaic to shelf and submarine fan depositional environments and known sediment sourcing constrained by detrital zircon dating and mineralogy linked to the Idaho Batholith, it is possible to place deposits of the Tyee Formation in a source-to-sink context. A research program carried out by the Department of Geological Sciences at The University of Texas at Austin and ExxonMobil Research Company’s Clastic Stratigraphy Group has reconstructed the Eocene continental margin from shelf to slope to basin floor using outcrop and subsurface data. This work allows us to put observations of individual outcrops into a basin-scale context. This field trip will visit examples of depositional environments across the entire preserved source-to-sink system, but it will focus on the deep-water deposits of the Tyee Formation that range from slope channels to proximal and distal basin-floor fans. High-quality roadcuts reveal the geometry of slope channel-fills in both depositional strike and dip orientations. Thick, sand-rich medial fan deposits show vertical amalgamation and a high degree of lateral continuity of sandstones and mudstones. Distal fan facies with both classic Bouma-type turbidites and combined flow or slurry deposits are well exposed along a series of new roadcuts east of Newport, Oregon. The larger basin-scale context of the Tyee Formation is illustrated at a quarry in the northern end of the basin where the contact between the oceanic crust of the underlying Siletzia terrane and submarine fan deposits of the Tyee Formation is exposed. The Tyee Formation provides an excellent opportunity to see the facies and three-dimensional geometry of deep-water deposits, and to show how these deposits can be used to help reconstruct ancient continental margins.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 329
Author(s):  
Clayton Silver ◽  
Heather Bedle

A long-standing problem in the understanding of deep-water turbidite reservoirs relates to how the three-dimensional evolution of deep-water channel systems evolve in response to channel filling on spatiotemporal scales, and how depositional environments affect channel architecture. The 3-D structure and temporal evolution of late Miocene deep-water channel complexes in the southern Taranaki Basin, New Zealand is investigated, and the geometry, distribution, and stacking patterns of the channel complexes are analyzed. Two recently acquired 3-D seismic datasets, the Pipeline-3D (proximal) and Hector-3D (distal) are analyzed. These surveys provide detailed imaging of late Miocene deep-water channel systems, allowing for the assessment of the intricate geometry and seismic geomorphology of the systems. Seismic attributes resolve the channel bodies and the associated architectural elements. Spectral decomposition, amplitude curvature, and coherence attributes reveal NW-trending straight to low-sinuosity channels and less prominent NE-trending high-sinuosity feeder channels. Stratal slices across the seismic datasets better characterize the architectural elements. The mapped turbidite systems transition from low-sinuosity to meandering high-sinuosity patterns, likely caused by a change in the shelf-slope gradient due to localized structural relief. Stacking facies patterns within the channel systems reveal the temporal variation from a depositional environment characterized by sediment bypass to vertically aggrading channel systems.


2021 ◽  
Author(s):  
N. Nirsal

The Andaman Trough, located offshore North Sumatra is currently defined as an emerging basin for exploration. Its location primarily in a remote deep-water environment has resulted in limited well data being acquired to date and although there has historically been abundant seismic data, imaging of pre-Miocene stratigraphy has been poor. New seismic data, including the regional PGS NSMC3D and proprietary and multi-client 2D reprocessed data, combined with high resolution biostratigraphical analysis, has enabled extrapolation of the stratigraphy from the well explored and established shelfal areas down into the deep-water areas. To establish the high-resolution stratigraphic framework, paleo-environment, and paleo-climate for the well penetrations in the Andaman Trough, re-evaluation of quantitative and semi-quantitative abundance charts based on nannofossil, micropaleontology, and palynology zonation and sequences was conducted. Integration of this updated biostratigraphic analysis with interpretation from the modern regional seismic datasets enabled the identification of and confirmation of sequence boundaries and flooding surfaces across the Andaman Trough. Insights into timing of rifting, uplift, and erosion were made, as well as an interpretation of depositional environments, paleo-bathymetry and paleo-climate throughout the Andaman Trough. Significant findings include the chronostratigraphic separation of Late Oligocene Parapat fluvialtile deposits from the overlying Bampo marine turbidites, absent or incomplete Bampo Formation penetrated by some wells, as well as the delineation of a previously unidentified Eocene unconformity and revised timing of basin formation. Further insights into source rock development for the Eocene stratigraphic package were also developed.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 653
Author(s):  
Shereef Bankole ◽  
Dorrik Stow ◽  
Zeinab Smillie ◽  
Jim Buckman ◽  
Helen Lever

Distinguishing among deep-water sedimentary facies has been a difficult task. This is possibly due to the process continuum in deep water, in which sediments occur in complex associations. The lack of definite sedimentological features among the different facies between hemipelagites and contourites presented a great challenge. In this study, we present detailed mudrock characteristics of the three main deep-water facies based on sedimentological characteristics, laser diffraction granulometry, high-resolution, large area scanning electron microscopy (SEM), and the synchrotron X-ray diffraction technique. Our results show that the deep-water microstructure is mainly process controlled, and that the controlling factor on their grain size is much more complex than previously envisaged. Retarding current velocity, as well as the lower carrying capacity of the current, has an impact on the mean size and sorting for the contourite and turbidite facies, whereas hemipelagite grain size is impacted by the natural heterogeneity of the system caused by bioturbation. Based on the microfabric analysis, there is a disparate pattern observed among the sedimentary facies; turbidites are generally bedding parallel due to strong currents resulting in shear flow, contourites are random to semi-random as they are impacted by a weak current, while hemipelagites are random to oblique since they are impacted by bioturbation.


Sign in / Sign up

Export Citation Format

Share Document