Influence of mass transport deposit (MTD) surface topography on deep-water deposition: an example from a predominantly fine-grained continental margin, New Zealand

2020 ◽  
Vol 500 (1) ◽  
pp. 147-171 ◽  
Author(s):  
Suzanne Bull ◽  
Greg H. Browne ◽  
Malcolm J. Arnot ◽  
Lorna J. Strachan

AbstractThree-dimensional (3D) seismic data reveal the complex interplay between the surface topography of a c. 4405 km3 mass transport deposit (MTD) and overlying sedimentary packages over approximately the last two million years. The data image part of the Pleistocene to recent shelf to slope to basin-floor Giant Foresets Formation in offshore western New Zealand. The MTD created substantive topographic relief and rugosity at the contemporaneous seabed, formed by the presence of a shallow basal detachment surface, and very large (up to 200 m high) intact slide blocks, respectively. Sediments were initially deflected away from high-relief MTD topography and confined in low areas. With time, the MTD was progressively healed by a series of broadly offset-stacked and increasingly unconfined packages comprised of many channel bodies and their distributary complexes. Positive topography formed by the channels and their distributary complexes further modified the seafloor and influenced the location of subsequent sediment deposition. Channel sinuosity increased over time, interpreted as the result of topographic healing and reduced seafloor gradients. The rate of sediment supply is likely to have been non-uniform, reflecting tectonic pulses across the region. Sediments were routed into deep water via slope-confined channels that originated shortly before emplacement of the MTD.

2021 ◽  
Author(s):  
◽  
Sarah Grain

<p>The Moki Formation, Taranaki Basin, New Zealand, is a Mid Miocene (Late Altonian to Early Lillburnian) sand-rich turbidite complex bounded above and below by the massive bathyal mudstone of the Manganui Formation. The Moki Formation is a proven hydrocarbon reservoir with its stacked, thick, tabular sandstone packages totalling more than 300 m in places. Previous regional studies of the formation have been based primarily on well data and resulted in varying palaeogeographic interpretations. This study, restricted to the southern offshore region of the basin, better constrains the spatial and temporal development of the Moki Formation by combining well data with seismic interpretation to identify key stratal geometries within the sediment package. Nearly 30,000 km of 2D seismic reflection profiles and two 3D surveys, along with data from 18 wells and three cores were reviewed and key sections analysed in detail. Seismic facies have been identified which provide significant insights into the structure, distribution and progressive development of the Moki Formation. These include: a clearly defined eastern limit of the fan complex, thinning and fining of the distal turbidite complex onto the basin floor in the north and west, evidence of fan lobe switching, spectacular meandering channel systems incised into the formation at seismic scales, and the coeval palaeoshelf-slope break in the south east of the basin. In addition, a Latest Lillburnian / Waiauan turbidite complex has been mapped with large feeder, fan and bypassing channels traced. This study presents an improved palaeogeographic interpretation of the Moki Formation and the younger, Latest Lillburnian / Waiauan-aged, turbidite complex. This interpretation shows that during the Late Altonian, sandstone deposition was localised to small fan bodies in the vicinity of Maui-4 to Moki-1 wells. A bathymetric deepening during the Clifdenian is identified, which appears to have occurred concurrently as the establishment of the Moki Formation fan system, centred around the southern and central wells. With continued sediment supply to the basin floor, the fan system prograded markedly northward and spilled onto the Western Stable Platform during the early Lillburnian. Sand influx to the bathyal basin floor abruptly ceased and large volumes of mud were deposited. By the Waiauan stage, sands were again deposited at bathyal depths on fan bodies and carried to greater depths through a complex bypassing channel system.</p>


2020 ◽  
Vol 90 (7) ◽  
pp. 729-762
Author(s):  
Daniel E. Tek ◽  
Miquel Poyatos-Moré ◽  
Marco Patacci ◽  
Adam D. McArthur ◽  
Luca Colombera ◽  
...  

ABSTRACT The inception and evolution of channels in deep-water systems is controlled by the axial gradient and lateral confinement experienced by their formative flows. These parameters are often shaped by the action of tectonic structures and/or the emplacement of mass-transport deposits (MTDs). The Arro turbidite system (Aínsa depocenter, Spanish Pyrenees) is an ancient example of a deep-water channelized system from a bathymetrically complex basin, deposited in an active tectonic setting. Sedimentologic fieldwork and geologic mapping of the Arro system has been undertaken to provide context for a detailed study of three of the best-exposed outcrops: Sierra de Soto Gully, Barranco de la Caxigosa, and Muro de Bellos. These locations exemplify the role of confinement in controlling the facies and architecture in the system. Sedimentologic characterization of the deposits has allowed the identification of fifteen facies and eight facies associations; these form a continuum and are non-unique to any depositional environment. However, architectural characterization allowed the grouping of facies associations into four depositional elements: i) weakly confined, increasing-to-decreasing energy deposits; ii) progradational, weakly confined to overbank deposits; iii) alternations of MTDs and turbidites; iv) channel fills. Different styles of channel architecture are observed. In Barranco de la Caxigosa, a master surface which was cut and subsequently filled hosts three channel stories with erosional bases; channelization was enhanced by quasi-instantaneous imposition of lateral confinement by the emplacement of MTDs. In Muro de Bellos, the inception of partially levee-confined channel stories was enhanced by progressive narrowing of the depositional fairway by tectonic structures, which also controlled their migration. Results of this study suggest that deep-water channelization in active tectonic settings may be enhanced or hindered due to: 1) flow interaction with MTD-margin topography or; 2) MTD-top topography; 3) differential compaction of MTDs and/or sediment being loaded into MTDs; 4) formation of megascours by erosive MTDs; 5) basin-floor topography being reset by MTDs. Therefore, the Arro system can be used as an analog for ancient subsurface or outcrop of channelized deposits in bathymetrically complex basins, or as an ancient record of deposits left by flow types observed in modern confined systems.


2003 ◽  
Vol 40 (10) ◽  
pp. 1375-1391 ◽  
Author(s):  
Donald A Wood ◽  
Robert W Dalrymple ◽  
Guy M Narbonne ◽  
James G Gehling ◽  
Matthew E Clapham

The Mistaken Point and Trepassey formations (Conception and St. John's groups, respectively) comprise a terminal Neoproterozoic, deep-marine succession of fine-grained turbidites and volcanogenic deposits that are part of the Avalonian Terrane. Debris-flow beds, slumped units, the low dispersion of turbidity-current paleoflow directions, and the absence of wave-generated structures together indicate that the sediment was deposited on a deep-water, southeast- facing slope. Channels were not present in the study area. The upward increase in the abundance of slump structures suggests that these units represent toe-of-slope and mid-slope environments, respectively. These units prograded over basin-floor deposits of the Drook and Briscal formations, which have (axial) paleocurrent directions that are orthogonal to the inferred downslope flow that characterized the overlying deposits. Within the Mistaken Point and Trepassey formations, a diverse assemblage of soft-bodied, non-phototrophic Ediacaran organisms is preserved beneath volcanic ash layers on more than one hundred surfaces. Individual fossiliferous surfaces can be correlated up to several kilometres. The felling orientations of frondose fossils indicate that contour currents, as well as up- and downslope currents of tidal and (or) wind-forced origin, influenced the sea floor in the intervals between event beds when the organisms lived. The contour currents may have been responsible for sustaining the organisms in this deep-water setting. The current-produced inclination of the frondose organisms at the time of ash deposition allowed their preservation by preventing the accumulation of ash beneath them.


Author(s):  
Surya Tejasvi Thota ◽  
Md Aminul Islam ◽  
Mohamed Ragab Shalaby

AbstractThe present study investigates the reservoir characteristics of the Mount Messenger Formation of Kaimiro-Ngatoro Field which was deposited in deep-water environment. A 3D seismic dataset, core data and well data from the Kaimiro-Ngatoro Field were utilized to identify lithofacies, sedimentary structures, stratigraphic units, depositional environments and to construct 3D geological models. Five different lithologies of sandstone, sandy siltstone, siltstone, claystone and mudstone are identified from core photographs, and also Bouma sequence divisions are also observed. Based on log character Mount Messenger Formation is divided into two stratigraphic units slope fans and basin floor fans; core analysis suggests that basin floor fans show better reservoir qualities compared to slope fan deposits. Seismic interpretation indicates 2 horizons and 11 faults, majority of faults have throw less than 10 m, and most of the faults have high angle dips of 70–80°. The Kaimiro and Ngatoro Fields are separated by a major Inglewood fault. Variance attribute helped to interpret faults, and other seismic attributes such as root-mean-square amplitude, envelope and generalized spectral decomposition also helped to detect hydrocarbons. The lithofacies model was constructed by using sequential simulation indicator algorithm, and the petrophysical models were constructed using sequential Gaussian simulation algorithm. The petrophysical parameters determined from the models comprised of  up to ≥ 25% porosity, permeability up to around 600mD, hydrocarbon saturation up to 60%, net to gross varies from 0 to 100%, majority of shale volumes are around 15–20%, the study interval mostly consists of macropores with some megapores and 4 hydraulic flow units. This study best characterizes the deep-water turbidite reservoir in New Zealand.


Author(s):  
Clayton Silver ◽  
Heather Bedle

A long-standing problem in the understanding of deep-water turbidite reservoirs relates to how the three-dimensional evolution of deep-water channel systems evolve in response to channel filling on spatio-temporal scales, and how depositional environments affect channel architecture. The 3-D structure and temporal evolution of late Miocene deep-water channel complexes in the southern Taranaki Basin, New Zealand is investigated, and the geometry, distribution and stacking patterns of the channel complexes are analyzed. Two recently acquired 3-D seismic datasets, the Pipeline-3D (proximal) and Hector-3D (distal) are analyzed. These surveys provide detailed imaging of late Miocene deep-water channel systems, allowing for the assessment of the intricate geometry and seismic geomorphology of the systems. Seismic attributes resolve the channel bodies and the associated architectural elements. Spectral decomposition, amplitude curvature, and coherence attributes reveal NW-trending straight to low-sinuosity channels and less prominent NE-trending high-sinuosity feeder channels. Stratal slices across the seismic datasets better characterize the architectural elements. The mapped turbidite systems transition from low-sinuosity to meandering high-sinuosity patterns, likely caused by a change in the shelf-slope gradient due to localized structural relief. Stacking facies patterns within the channel systems reveal the temporal variation from a depositional environment characterized by sediment bypass to vertically aggrading channel systems.


2021 ◽  
pp. 19-48
Author(s):  
Gwladys T. Gaillot* ◽  
Michael L. Sweet ◽  
Manasij Santra

ABSTRACT The Eocene Tyee Formation of west central Oregon, USA, records deposition in a forearc basin. With outcrop exposures of fluvial/deltaic to shelf and submarine fan depositional environments and known sediment sourcing constrained by detrital zircon dating and mineralogy linked to the Idaho Batholith, it is possible to place deposits of the Tyee Formation in a source-to-sink context. A research program carried out by the Department of Geological Sciences at The University of Texas at Austin and ExxonMobil Research Company’s Clastic Stratigraphy Group has reconstructed the Eocene continental margin from shelf to slope to basin floor using outcrop and subsurface data. This work allows us to put observations of individual outcrops into a basin-scale context. This field trip will visit examples of depositional environments across the entire preserved source-to-sink system, but it will focus on the deep-water deposits of the Tyee Formation that range from slope channels to proximal and distal basin-floor fans. High-quality roadcuts reveal the geometry of slope channel-fills in both depositional strike and dip orientations. Thick, sand-rich medial fan deposits show vertical amalgamation and a high degree of lateral continuity of sandstones and mudstones. Distal fan facies with both classic Bouma-type turbidites and combined flow or slurry deposits are well exposed along a series of new roadcuts east of Newport, Oregon. The larger basin-scale context of the Tyee Formation is illustrated at a quarry in the northern end of the basin where the contact between the oceanic crust of the underlying Siletzia terrane and submarine fan deposits of the Tyee Formation is exposed. The Tyee Formation provides an excellent opportunity to see the facies and three-dimensional geometry of deep-water deposits, and to show how these deposits can be used to help reconstruct ancient continental margins.


2020 ◽  
Author(s):  
Sally Watson ◽  
Joshu Mountjoy ◽  
Gareth Crutchley

&lt;p&gt;Submarine landslides occur on continental margins globally and can have devastating consequences for marine habitats, offshore infrastructure and coastal communities due to potential tsunamigenic consequences. Evaluation of the magnitude and distribution of submarine landslides is central to marine and coastal hazard planning. Despite this, there are few studies that comprehensively quantify the occurrence of submarine landslides on a margin-wide scale.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;We present the first margin-wide submarine landslide database along the eastern margin of New Zealand comprising &gt;2200 landslide scars and associated mass-transport deposits. Analysis of submarine landslide distribution reveals 1) locations prone to mass-failure, 2) spatial patterns of landslide scale and occurrence, and 3) the potential preconditioning factors and triggers of mass wasting across different geologic settings.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Submarine landslides are widespread on the eastern margin of New Zealand, occurring in water depths from ~300 m to ~4,000 m. Landslide scars and mass transport deposits are more prevalent, and on average larger, on the active margin, compared the passive margin. We attribute higher concentrations of landslides on the active margin to the prevalence of deforming thrust ridges, related to active margin processes including oversteepening, faulting and seamount subduction. Higher sediment supply on the northernmost active margin is also likely to be a key preconditioning factor resulting in the concentration of large landslides in this region.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;In general, submarine landslide scars are concentrated around canyon systems and close to canyon thalwegs. This suggests that not only does mass wasting play a major role in canyon evolution, but also that slope undercutting in canyons may be a fundamental preconditioning factor for slope failure.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Results of this study offer unique insights into the spatial distribution, magnitude and morphology of submarine landslides across different geologic settings, providing a better understanding of the causative factors for mass wasting in New Zealand and around the world.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2020 ◽  
Author(s):  
Natacha Fabregas ◽  
Robert Gawthorpe ◽  
Mary Ford ◽  
Martin Muravchik ◽  
Sofia Pechlivanidou ◽  
...  

&lt;p&gt;The Gulf of Corinth is one of the World&amp;#8217;s fastest extending continental rift basins. During the Late Pleistocene, it alternated between marine and lacustrine conditions due to climate-driven sea-level fluctuations connecting or isolating/semi-isolating it from the open ocean. Core from IODP Expedition 381 (Corinth Active Rift Development) provide a continuous record of depositional processes operating within this deep-water rift and the interaction of tectonic and climate drivers controlling deep-water deposition over the Middle to Late Pleistocene. Subaqueous sediment density flows affect the Gulf of Corinth and are classified either by physical flow properties and grain support mechanisms or by depositional processes. Existing classifications mainly describe deposits from decimetre to 10&amp;#8217;s of meter scale with an emphasis on sandy beds. Thinner (millimetre to centimetre scale) and finer (muddy to sandy) subaqueous sedimentary density flows beds are understudied. Low energy flows and tail of flow processes need a better understanding and are the target of this work. The aim of this study is to characterise the variability of fine-grained subaqueous sedimentary gravity flow deposits and the controls on their development based on core data from Site M0079 (IODP Expedition 381).&amp;#160; This site is located in the deepest part of the Gulf of Corinth (857 m water depth), in the most distal part of the sediment routing system. Analyses were performed within a 100 m interval covering Marine Isotope Stages 6 and 7 (from ~130 to ~250 ka). Detailed, sub-centimetre visual logging recorded over 2 000 beds classified according to (1) the presence/absence of a coarse base, (2) the grain-size (silty or sandy) of the base (if any), (3) the presence/absence of laminations within the muddy intervals, (4) sedimentary structures. The bed types reflect the diversity of the sedimentary processes and the subaqueous sediment density flows are thus organised within the depositional model. Bed frequency analysis provides insight into the variability between marine and lacustrine conditions. Relative chemical composition obtained from high resolution (2 mm) X-ray fluorescence scanning is used: (1) to examine the interactions between tail of the flow and background sedimentation in the basin and (2) to assess the provenance of the sediments.&lt;/p&gt;


2015 ◽  
Vol 66 (2) ◽  
pp. 99-116 ◽  
Author(s):  
Shunli Li ◽  
Xinghe Yu ◽  
Shengli Li ◽  
Katherine A. Giles

Abstract The architecture and sedimentary characteristics of deep water deposition can reflect influences of sea-level change on depositional processes on the shelf edge, slope, and basin floor. Outcrops of the northern slope and basin floor of the Delaware Basin in west Texas are progressively exposed due to canyon incision and road cutting. The outcrops in the Delaware Basin were measured to characterize gravity flow deposits in deep water of the basin. Subsurface data from the East Ford and Red Tank fields in the central and northeastern Delaware Basin were used to study reservoir architectures and properties. Depositional models of deep water gravity flows at different stages of sea-level change were constructed on the basis of outcrop and subsurface data. In the falling-stage system tracts, sandy debris with collapses of reef carbonates are deposited on the slope, and high-density turbidites on the slope toe and basin floor. In the low-stand system tracts, deep water fans that consist of mixed sand/mud facies on the basin floor are comprised of high- to low-density turbidites. In the transgression and high-stand system tracts, channel-levee systems and elongate lobes of mud-rich calciturbidite deposits formed as a result of sea level rise and scarcity of sandy sediment supply. For the reservoir architecture, the fan-like debris and high-density turbidites show high net-to-gross ratio of 62 %, which indicates the sandiest reservoirs for hydrocarbon accumulation. Lobe-like deep water fans with net-to-gross ratio of 57 % facilitate the formation of high quality sandy reservoirs. The channel-levee systems with muddy calciturbidites have low net-to-gross ratio of 30 %.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 329
Author(s):  
Clayton Silver ◽  
Heather Bedle

A long-standing problem in the understanding of deep-water turbidite reservoirs relates to how the three-dimensional evolution of deep-water channel systems evolve in response to channel filling on spatiotemporal scales, and how depositional environments affect channel architecture. The 3-D structure and temporal evolution of late Miocene deep-water channel complexes in the southern Taranaki Basin, New Zealand is investigated, and the geometry, distribution, and stacking patterns of the channel complexes are analyzed. Two recently acquired 3-D seismic datasets, the Pipeline-3D (proximal) and Hector-3D (distal) are analyzed. These surveys provide detailed imaging of late Miocene deep-water channel systems, allowing for the assessment of the intricate geometry and seismic geomorphology of the systems. Seismic attributes resolve the channel bodies and the associated architectural elements. Spectral decomposition, amplitude curvature, and coherence attributes reveal NW-trending straight to low-sinuosity channels and less prominent NE-trending high-sinuosity feeder channels. Stratal slices across the seismic datasets better characterize the architectural elements. The mapped turbidite systems transition from low-sinuosity to meandering high-sinuosity patterns, likely caused by a change in the shelf-slope gradient due to localized structural relief. Stacking facies patterns within the channel systems reveal the temporal variation from a depositional environment characterized by sediment bypass to vertically aggrading channel systems.


Sign in / Sign up

Export Citation Format

Share Document