scholarly journals Review of pseudo-three-dimensional modeling approaches in hydraulic fracturing

Author(s):  
Hai T. Nguyen ◽  
Jang Hyun Lee ◽  
Khaled A. Elraies

AbstractIn the field of hydraulic fracture modeling, the pseudo-three-dimensional (P3D) approach is an efficient and practical computational tool serving as a compromise between two-dimensional and planar three-dimensional models. This review discusses the P3D modeling approach from its early developmental stage in the 1980s to the present. The evolution of P3D modeling is drawn over time based on the major differences in the governing formulation and assumptions considered by each model. The problems of equilibrium height growth and vertical viscous fluid resistance (i.e., non-equilibrium height growth) emphasize the primary differences among these models. Besides, the P3D-based complex fracture network models for shale oil and gas reservoirs accounting for the interaction between preexisting natural fractures and induced hydraulic fractures are discussed. Finally, in the application section, several simulations are reported to demonstrate the validation of the P3D numerical algorithm by comparing it with the Perkins–Kern–Nordgren (PKN) large and small asymptotic solutions, as well as the effect of time-dependent variable injection rates on the hydraulic fracture propagation. The results showed a good matching between P3D and PKN solutions and a significant effect of the wellbore variable injection rate on the evolution of the fracture length.

2020 ◽  
Vol 38 (6) ◽  
pp. 2466-2484
Author(s):  
Jianguang Wei ◽  
Saipeng Huang ◽  
Guangwei Hao ◽  
Jiangtao Li ◽  
Xiaofeng Zhou ◽  
...  

Hydraulic fracture initiation and propagation are extremely important on deciding the production capacity and are crucial for oil and gas exploration and development. Based on a self-designed system, multi-perforation cluster-staged fracturing in thick tight sandstone reservoir was simulated in the laboratory. Moreover, the technology of staged fracturing during casing completion was achieved by using a preformed perforated wellbore. Three hydraulic fracturing methods, including single-perforation cluster fracturing, multi-perforation cluster conventional fracturing and multi-perforation cluster staged fracturing, were applied and studied, respectively. The results clearly indicate that the hydraulic fractures resulting from single-perforation cluster fracturing are relatively simple, which is difficult to form fracture network. In contrast, multi-perforation cluster-staged fracturing has more probability to produce complex fractures including major fracture and its branched fractures, especially in heterogeneous samples. Furthermore, the propagation direction of hydraulic fractures tends to change in heterogeneous samples, which is more likely to form a multi-directional hydraulic fracture network. The fracture area is greatly increased when the perforation cluster density increases in multi-perforation cluster conventional fracturing and multi-perforation cluster-staged fracturing. Moreover, higher perforation cluster densities and larger stage numbers are beneficial to hydraulic fracture initiation. The breakdown pressure in homogeneous samples is much higher than that in heterogeneous samples during hydraulic fracturing. In addition, the time of first fracture initiation has the trend that the shorter the initiation time is, the higher the breakdown pressure is. The results of this study provide meaningful suggestions for enhancing the production mechanism of multi-perforation cluster staged fracturing.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8297
Author(s):  
Jianfa Wu ◽  
Haoyong Huang ◽  
Ersi Xu ◽  
Junfeng Li ◽  
Xiaohua Wang

The formation mechanism and propagation behaviors of a three-dimensional hydraulic fracture network in fractured shale reservoirs remain unclear, especially when the scale of hydraulic fractures is much larger than that of natural fractures. In this study, taking the well XH in the Longmaxi shale reservoir in the Sichuan Basin, China as an example, we develop a fully three-dimensional numerical model for hydraulic fracturing coupled with microseismicity based on the discrete lattice method. We introduce a randomly generated discrete fracture network into the proposed model and explore the formation mechanism of the hydraulic fracture network under the condition that the hydraulic fractures are much larger than natural fractures in scale. Moreover, microseismic events are inversely synthesized in the numerical model, which allows the evolution of the fracture network to be monitored and evaluated quantitatively. In addition, we analyze the effects of injection rate, horizontal stress difference, and fluid viscosity on fracture propagation. Our results show that when the scale of hydraulic fractures is much larger than that of natural fractures, the fracture morphology of “main hydraulic fractures + complex secondary fractures” is mainly formed. We find that a high injection rate can not only create a complex fracture network, but also improve the uniform propagation of multi-cluster fractures and enhance far-field stimulation efficiency. Optimizing the horizontal wellbore intervals with low horizontal stress differences as the sweet spots of hydraulic fracturing is also beneficial to improve the stimulation efficiency. For zones with a large number of natural fractures, it is recommended to use an injection schedule with high viscosity fluid early and low viscosity fluid late to allow the hydraulic fractures to propagate to the far-field to maximize the stimulation effect.


2021 ◽  
pp. 014459872110019
Author(s):  
Weiyong Lu ◽  
Changchun He

During horizontal well staged fracturing, there is stress interference between multiple transverse fractures in the same perforation cluster. Theoretical analysis and numerical calculation methods are applied in this study. We analysed the mechanism of induced stress interference in a single fracture under different fracture spacings and principal stress ratios. We also investigated the hydraulic fracture morphology and synchronous expansion process under different fracture spacings and principal stress ratios. The results show that the essence of induced stress is the stress increment in the area around the hydraulic fracture. Induced stress had a dual role in the fracturing process. It created favourable ground stress conditions for the diversion of hydraulic fractures and the formation of complex fracture network systems, inhibited fracture expansion in local areas, stopped hydraulic fractures, and prevented the formation of effective fractures. The curves of the maximum principal stress, minimum principal stress, and induced principal stress difference with distance under different fracture lengths, different fracture spacings, and different principal stress ratios were consistent overall. With a small fracture spacing and a small principal stress ratio, intermediate hydraulic fractures were difficult to initiate or arrest soon after initiation, fractures did not expand easily, and the expansion speed of lateral hydraulic fractures was fast. Moreover, with a smaller fracture spacing and a smaller principal stress ratio, hydraulic fractures were more prone to steering, and even new fractures were produced in the minimum principal stress direction, which was beneficial to the fracture network communication in the reservoir. When the local stress and fracture spacing were appropriate, the intermediate fracture could expand normally, which could effectively increase the reservoir permeability.


SPE Journal ◽  
2021 ◽  
pp. 1-10
Author(s):  
Ge Jin ◽  
Gustavo Ugueto ◽  
Magdalena Wojtaszek ◽  
Artur Guzik ◽  
Dana Jurick ◽  
...  

Summary The characteristics of hydraulic fractures in the near-wellbore region contain critical information related to the production performance of unconventional wells. We demonstrate a novel application of a fiber-optic-based distributed strain sensing (DSS) technology to measure and characterize near-wellbore fractures and perforation cluster efficiency during production. Distributed fiber-optic-based strain measurements are made based on the frequency shift of the Rayleigh scatter spectrum, which is linearly dependent on strain and temperature changes of the sensing fiber. Strain changes along the wellbore are continuously measured during the shut-in and reopening operations of a well. After removing temperature effects, extensional strain changes can be observed at locations around the perforation cluster during a shut-in period. We interpret that the observed strain changes are caused by near-wellbore fracture aperture changes caused by pressure increases within the near-wellbore fracture network. The depth locations of the measured strain changes correlate well with distributed acoustic sensing (DAS) acoustic intensity measurements that were measured during the stimulation of the well. The shape and magnitude of the strain changes differ significantly between two completion designs in the same well. Different dependencies between strain and borehole pressure can be observed at most of the perforation clusters between the shut-in and reopening periods. We assess that this new type of distributed fiber-optic measurement method can significantly improve understanding of near-wellbore hydraulic fracture characteristics and the relationships between stimulation and production from unconventional oil and gas wells.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 633
Author(s):  
Guangzhi Yang ◽  
Shicheng Zhang ◽  
Jia Wang ◽  
Ning Li ◽  
Xinfang Ma ◽  
...  

Exploring engineering methods for increasing fracture network complexity is important for the development of unconventional oil and gas reservoirs. In this study, we conducted a series of fracturing experiments on naturally fractured volcanic samples. An injection method, multiple flow pulses, is proposed to increase fracture complexity. The results show that fluid leaked into the natural fracture network (NFN) when the injection rate was low (0.2 mL/min); hydraulic-fracture-dominant fracture geometry was created with an injection rate of 2 and 5 mL/min. Under the 2 mL/min-injection scheme with 3 pulses, the injection pressure during the intermittent stage was low (<5 MPa), resulting in a limited increase in fracture complexity. When the number of the flow pulses increased to 5, the pressure drop rate in the fourth and fifth intermittent stage significantly increased, indicating an increase in the aperture of natural fractures (NFs) and in the fluid leak-off effect. Under the 5 mL/min injection scheme containing 5 pulses, besides the enhanced fluid leak-off, a sharp injection pressure drop was observed, indicating the activation of NFs. The complexity and the aperture of the ultimate fracture network further increased. The injection method, multiple flow pulses, can be used to create complex fracture networks effectively.


SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2148-2162 ◽  
Author(s):  
Pengcheng Fu ◽  
Jixiang Huang ◽  
Randolph R. Settgast ◽  
Joseph P. Morris ◽  
Frederick J. Ryerson

Summary The height growth of a hydraulic fracture is known to be affected by many factors that are related to the layered structure of sedimentary rocks. Although these factors are often used to qualitatively explain why hydraulic fractures usually have well–bounded height growth, most of them cannot be directly and quantitatively characterized for a given reservoir to enable a priori prediction of fracture–height growth. In this work, we study the role of the “roughness” of in–situ–stress profiles, in particular alternating low and high stress among rock layers, in determining the tendency of a hydraulic fracture to propagate horizontally vs. vertically. We found that a hydraulic fracture propagates horizontally in low–stress layers ahead of neighboring high–stress layers. Under such a configuration, a fracture–mechanics principle dictates that the net pressure required for horizontal growth of high–stress layers within the current fracture height is significantly lower than that required for additional vertical growth across rock layers. Without explicit consideration of the stress–roughness profile, the system behaves as if the rock is tougher against vertical propagation than it is against horizontal fracture propagation. We developed a simple relationship between the apparent differential rock toughness and characteristics of the stress roughness that induce equivalent overall fracture shapes. This relationship enables existing hydraulic–fracture models to represent the effects of rough in–situ stress on fracture growth without directly representing the fine–resolution rough–stress profiles.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6474
Author(s):  
Tri Pham ◽  
Ruud Weijermars

The Time-Stepped Linear Superposition Method (TLSM) has been used previously to model and analyze the propagation of multiple competitive hydraulic fractures with constant internal pressure loads. This paper extends the TLSM methodology, by including a time-dependent injection schedule using pressure data from a typical diagnostic fracture injection test (DFIT). In addition, the effect of poro-elasticity in reservoir rocks is accounted for in the TLSM models presented here. The propagation of multiple hydraulic fractures using TLSM-based codes preserves infinite resolution by side-stepping grid refinement. First, the TLSM methodology is briefly outlined, together with the modifications required to account for variable time-dependent pressure and poro-elasticity in reservoir rock. Next, real world DFIT data are used in TLSM to model the propagation of multiple dynamic fractures and study the effect of time-dependent pressure and poro-elasticity on the development of hydraulic fracture networks. TLSM-based codes can quantify and visualize the effects of time-dependent pressure, and poro-elasticity can be effectively analyzed, using DFIT data, supported by dynamic visualizations of the changes in spatial stress concentrations during the fracture propagation process. The results from this study may help develop fracture treatment solutions with improved control of the fracture network created while avoiding the occurrence of fracture hits.


2018 ◽  
Vol 115 (41) ◽  
pp. 10228-10232
Author(s):  
Niall J. O’Keeffe ◽  
Zhong Zheng ◽  
Herbert E. Huppert ◽  
P. F. Linden

The formation of a fracture network is a key process for many geophysical and industrial practices from energy resource recovery to induced seismic management. We focus on the initial stage of a fracture network formation using experiments on the symmetric coalescence of two equal coplanar, fluid-driven, penny-shaped fractures in a brittle elastic medium. Initially, the fractures propagate independently of each other. The fractures then begin to interact and coalesce, forming a bridge between them. Within an intermediate period after the initial contact, most of the fracture growth is localized along this bridge, perpendicular to the line connecting the injection sources. Using light attenuation and particle image velocimetry to measure both the fracture aperture and velocity field, we characterize the growth of this bridge. We model this behavior using a geometric volume conservation argument dependent on the symmetry of the interaction, with a 2D approximation for the bridge. We also verify experimentally the scaling for the bridge growth and the shape of the thickness profile along the bridge. The influence of elasticity and toughness of the solid, injection rate of the fluid, and initial location of the fractures are captured by our scaling.


2020 ◽  
pp. 014459872096083
Author(s):  
Yulong Liu ◽  
Dazhen Tang ◽  
Hao Xu ◽  
Wei Hou ◽  
Xia Yan

Macrolithotypes control the pore-fracture distribution heterogeneity in coal, which impacts stimulation via hydrofracturing and coalbed methane (CBM) production in the reservoir. Here, the hydraulic fracture was evaluated using the microseismic signal behavior for each macrolithotype with microfracture imaging technology, and the impact of the macrolithotype on hydraulic fracture initiation and propagation was investigated systematically. The result showed that the propagation types of hydraulic fractures are controlled by the macrolithotype. Due to the well-developed natural fracture network, the fracture in the bright coal is more likely to form the “complex fracture network”, and the “simple” case often happens in the dull coal. The hydraulic fracture differences are likely to impact the permeability pathways and the well productivity appears to vary when developing different coal macrolithtypes. Thus, considering the difference of hydraulic fracture and permeability, the CBM productivity characteristics controlled by coal petrology were simulated by numerical simulation software, and the rationality of well pattern optimization factors for each coal macrolithotype was demonstrated. The results showed the square well pattern is more suitable for dull coal and semi-dull coal with undeveloped natural fractures, while diamond and rectangular well pattern is more suitable for semi-bright coal and bright coal with more developed natural fractures and more complex fracturing fracture network; the optimum wells spacing of bright coal and semi-bright coal is 300 m and 250 m, while that of semi-dull coal and dull coal is just 200 m.


Sign in / Sign up

Export Citation Format

Share Document