Dependence of cross-termination rate on RAFT agent concentration in RAFT polymerization

2017 ◽  
Vol 25 (9) ◽  
pp. 931-935 ◽  
Author(s):  
Yanggang Gao ◽  
Ling Lv ◽  
Gang Zou ◽  
Qijin Zhang
2011 ◽  
Vol 89 (3) ◽  
pp. 317-325 ◽  
Author(s):  
Binxin Li ◽  
Daniel Majonis ◽  
Peng Liu ◽  
Mitchell A. Winnik

We describe the synthesis of an end-functionalized copolymer of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-hydroxysuccinimide methacrylate (NMS) by reversible addition–fragmentation chain transfer (RAFT) polymerization. To control the polymer composition, the faster reacting monomer (NMS) was added slowly to the reaction mixture beginning 30 min after initating the polymerization (ca. 16% HPMA conversion). One RAFT agent, based on azocyanopentanoic acid, introduced a –COOH group to the chain at one end. Use of a different RAFT agent containing a 4-amino-1,8-naphthalimide dye introduced a UV–vis absorbing and fluorescent group at this chain end. The polymers obtained had molecular weights of 30 000 and 20 000, respectively, and contained about 30 mol% NMS active ester groups.


Polymers ◽  
2017 ◽  
Vol 9 (12) ◽  
pp. 44
Author(s):  
Keita Kinoshita ◽  
Yuta Mori ◽  
Taku Takami ◽  
Yusuke Uchida ◽  
Yoshihiko Murakami

e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Di Zhou ◽  
Xiulin Zhu ◽  
Jian Zhu ◽  
Lihua Hu ◽  
Zhenping Cheng

AbstractBenzyl 9H-carbazole-9-carbodithioate (BCC) was synthesized and characterized. The single-crystal structure of BCC was first reported. The RAFT polymerizations of styrene and acrylates using BCC as the RAFT agent under conventional polymerization conditions were investigated. The results showed that the BCC was an effective RAFT agent for the polymerizations of styrene and acrylates. The well-controlled polymers were labelled with carbazole group, which was confirmed by 1H NMR and the chain extension of the obtained polymer. Azo modified poly(methyl acrylate) (PMA) was synthesized through a postpolymerization azo-coupling scheme. The optical properties of obtained polymer were also characterized. The results showed that the carbazole group labelled polymer exhibited fluorescence and the azo polymer exhibited UV absorption behaviour in N,N-dimethyl formamide (DMF).


2006 ◽  
Vol 59 (10) ◽  
pp. 719 ◽  
Author(s):  
Christopher Barner-Kowollik ◽  
Thomas P. Davis ◽  
Martina H. Stenzel

Various pathways to generate star polymers using reversible addition–fragmentation transfer (RAFT) are discussed. Similar to other polymerization techniques, star polymers can be generated using arm-first and core-first approaches. Unique to the RAFT process is the subdivision of the core-first approach into the R-group and Z-group approaches, depending on the attachment of the RAFT agent to the multifunctional core. The mechanism of the R- and Z-group approaches are discussed in detail and it is shown that both techniques have to overcome difficulties arising from termination reactions. Termination reactions were found to broaden the molecular weight. However, these side reactions can be limited by careful design of the synthesis. Considerations include RAFT and radical concentration, number of arms, type of RAFT agent and monomer. Despite obvious challenges, the RAFT process is highly versatile, allowing the synthesis of novel polymer architectures such as poly(vinyl acetate) and poly(vinyl pyrrolidone) star polymers.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5147
Author(s):  
Wanting Hou ◽  
Ruiqi Liu ◽  
Siwei Bi ◽  
Qian He ◽  
Haibo Wang ◽  
...  

Due to a strong retardation effect of o-nitrobenzyl ester on polymerization, it is still a great challenge to prepare amphiphilic block copolymers for polymersomes with a o-nitrobenzyl ester-based hydrophobic block. Herein, we present one such solution to prepare amphiphilic block copolymers with pure poly (o-nitrobenzyl acrylate) (PNBA) as the hydrophobic block and poly (N,N’-dimethylacrylamide) (PDMA) as the hydrophilic block using bulk reversible addition-fragmentation chain transfer (RAFT) polymerization of o-nitrobenzyl acrylate using a PDMA macro-RAFT agent. The developed amphiphilic block copolymers have a suitable hydrophobic/hydrophilic ratio and can self-assemble into photoresponsive polymersomes for co-loading hydrophobic and hydrophilic cargos into hydrophobic membranes and aqueous compartments of the polymersomes. The polymersomes demonstrate a clear photo-responsive characteristic. Exposure to light irradiation at 365 nm can trigger a photocleavage reaction of o-nitrobenzyl groups, which results in dissociation of the polymersomes with simultaneous co-release of hydrophilic and hydrophobic cargoes on demand. Therefore, these polymersomes have great potential as a smart drug delivery nanocarrier for controllable loading and releasing of hydrophilic and hydrophobic drug molecules. Moreover, taking advantage of the conditional releasing of hydrophilic and hydrophobic drugs, the drug delivery system has potential use in medical applications such as cancer therapy.


2011 ◽  
Vol 45 (2) ◽  
pp. 794-804 ◽  
Author(s):  
Shinji Sugihara ◽  
Kenta Yamashita ◽  
Keiji Matsuzuka ◽  
Isao Ikeda ◽  
Yasushi Maeda

2012 ◽  
Vol 32 (1) ◽  
Author(s):  
Mehdi Salami-Kalajahi ◽  
Vahid Haddadi-Asl ◽  
Farid Behboodi-Sadabad ◽  
Saeid Rahimi-Razin ◽  
Hossein Roghani-Mamaqani

Abstract S-(thiobenzoyl)thioglycolic acid was used to synthesize poly(methyl methacrylate) via reversible addition-fragmentation chain transfer (RAFT) polymerization. To study the polymerization kinetics, in situ polymerization reactions were performed with different loading of nanoparticles. To investigate the effect of surface modification on the poly­merization kinetics, similar reactions were performed with 3-methacryloxypropyldimethylchlorosilane-modified nanoparticles. Conversion, reaction rate, molecular weight and polydispersity index (PDI) were monitored during poly­merization. According to results, pseudo-first order kinetics is achieved, but the rate constant of chain transfer reaction to the RAFT agent (Ctr) has a very small value. Adding nanoparticles causes no considerable change in the kinetic curves, while there is an optimum value for nanoparticles loading in which the polymerization rate reaches its maximum level. A similar trend is observed for molecular weight; however, increasing silica content results in an increase in PDI values. In comparison with pristine silica nanoparticles, the polymerization rate increases slowly in the case of modified particles. Also, molecular weight and PDI for free and graft chains are studied separately. The molecular weight of free chains increases with increasing nanoparticles loading up to 7 wt% and then decreases, while PDI values increase continually by adding nanoparticles. However, for graft chains, molecular weight and PDI values increase with increasing nanoparticle content.


2020 ◽  
pp. 000-000 ◽  
Author(s):  
Hyunsung Mun ◽  
Kiwon Hwang ◽  
Gwanghoon Kwag ◽  
JaeKon Suh ◽  
Duseong Ahn ◽  
...  

ABSTRACT In recent years, solution styrene–butadiene rubber (SSBR), which has a narrow molecular weight distribution, controllable microstructure, and chain end functionality, is mainly used as base rubber for passenger car tire tread compounds. However, SSBR has a lower molecular weight than that of emulsion SBR (ESBR) because it is difficult to increase the molecular weight of SSBR. In contrast, ESBR can easily increase the molecular weight; however, it has a broad molecular weight distribution. The reversible addition-fragmentation chain transfer (RAFT) polymerization technique is applicable to the emulsion polymerization. Polymers with narrow molecular weight distributions can be obtained by the RAFT polymerization because the RAFT agent prevents the coupling reaction of the growing chain radicals. In this case, ESBR having a narrow molecular weight distribution, which is an advantage of SSBR, and a high molecular weight, which is an advantage of ESBR, can be synthesized. Therefore, we synthesized RAFT ESBR and fabricated its compounds with silica filler. We confirmed that the physical properties of the RAFT ESBR silica compound are different from those of the ESBR silica compound. In addition to the narrow molecular weight distribution of the RAFT ESBR, the trithiocarbonyl group of the RAFT agent in the RAFT ESBR chain molecules affects the physical properties.


RSC Advances ◽  
2015 ◽  
Vol 5 (20) ◽  
pp. 15461-15468 ◽  
Author(s):  
Bishnu P. Koiry ◽  
Arindam Chakrabarty ◽  
Nikhil K. Singha

Preparation of an amphiphilic block copolymer (Am-BCP) based on poly(ethylene glycol) methyl ether methacrylate (PEGMA) and heptafluorobutyl acrylate (HFBA) via RAFT polymerization and application of this Am-BCP as surf-RAFT agent for polymerization of styrene.


Sign in / Sign up

Export Citation Format

Share Document