scholarly journals Fluid Resonance Between Twin Floating Barges with Roll Motion Under Wave Action

2021 ◽  
Vol 35 (6) ◽  
pp. 789-801
Author(s):  
Shu Li ◽  
Bin Teng

AbstractThe wave-induced fluid resonance between twin side-by-side rectangular barges coupled with the roll motion of the twin barges is investigated by both numerical simulation and physical model test. A 2D numerical wave flume, based on an open source computational fluid dynamics (CFD) package OpenFOAM, is applied for the numerical simulation. After numerical validations and convergent verifications, the characteristics of the fluid resonance in the gap between the twin rolling side-by-side barges are examined. The resonant frequency of the oscillating fluid in the gap between the twin rolling barges decreases compared with that between the twin fixed barges. Generally, the twin barges roll in the opposite directions, and their equilibrium positions lean oppositely with respect to the initial vertical direction. A physical model test is carried out for a further investigation, in which the twin barges are set oppositely leaning and fixed. From the present experimental results, a linear decrease of the resonant frequency with the increasing leaning angle is found. Combined with the numerical results, the deflection of the equilibrium positions of the twin barges is a relevant factor for the resonant frequency. Besides, the effects of the gap width and incident wave height on the fluid resonance coupled with roll motion are examined.

2011 ◽  
Vol 117-119 ◽  
pp. 647-651
Author(s):  
Chuan Qi Li ◽  
Wei Wang ◽  
Jie Gong ◽  
Xin Lai Zhao

Physical and numerical model studies were performed in order to study the flow conditions for the proposed pump station of Shuangwangcheng reservoir, Shouguang Ctiy. The flow velocity and the pressure distribution in the bidirectional culvert of Shuangwangcheng Pump Station had been obtained by hydraulic model test and numerical simulation. The physical model was constructed to a Froude scale of 1:20. A general conclusion was that, the computed results were good agreement with the data measured in physical model, and could be good complement for physical model test. Furthermore, negative pressure existing in discharge steep culvert in the initial scheme design was eliminated by moving the culvert controlling gate to the end of culvert in the modified scheme, and the flow conditions was improved.


2012 ◽  
Vol 588-589 ◽  
pp. 1781-1785
Author(s):  
Li Ping Zhao ◽  
Jian Qiu Zhang ◽  
Lei Chen ◽  
Xuan Xie ◽  
Jun Qiang Cheng

Studying the hydrodynamic characteristics of the sloping breakwater of circular protective facing by physical model test and taking a numerical simulation analysis of current field around the circular protective facing with holes under wave action by FLOW—3D.


2021 ◽  
Vol 31 (2) ◽  
pp. 291-302
Author(s):  
Xiaoming Sun ◽  
Chengwei Zhao ◽  
Yong Zhang ◽  
Feng Chen ◽  
Shangkun Zhang ◽  
...  

2020 ◽  
Vol 195 ◽  
pp. 106660 ◽  
Author(s):  
Rong Wan ◽  
Qinglong Guan ◽  
Zengguang Li ◽  
Fuxiang Hu ◽  
Shuchuang Dong ◽  
...  

2011 ◽  
Vol 243-249 ◽  
pp. 2220-2228
Author(s):  
Bin Wei Xia ◽  
Jie Wang ◽  
Yi Yu Lu ◽  
Yong Kang ◽  
Dong Li

The layered rock mass consists of kinds of stratifications whose mechanical properties are not wholly identical with each other. In order to figure out its strength failure criterion, the variable bond strength failure criterion is proposed depending on Mohr-Coulomb yield criterion and the change law of the strength parameters varying with the dip angle of stratification plane (that is the angle between the maximum principal stress and the stratification plane). What’s more, the criterion is verified by physical model test and numerical simulation adopting assembly language VC++6.0. Compared with the results of physical model tests and numerical simulation, it is shown that the stress distributions and failure regions are elliptic in shape and that the maximum failure regions are vertical to the stratification planes. That the results obtained in the physical model test are compatible with those numerically obtained verifies the correctness of variable bond strength failure criterion.


Sign in / Sign up

Export Citation Format

Share Document