Genetic relationships of 24 Pennisetum cultivars and construction of DNA fingerprints based on SSR markers

Author(s):  
Chengran Wang ◽  
Xuming Dan ◽  
Ting Liu ◽  
Qingyao Li ◽  
Zhengjun Pu ◽  
...  
Genetika ◽  
2017 ◽  
Vol 49 (2) ◽  
pp. 693-704
Author(s):  
Hasan Pinar ◽  
Ercan Yildiz ◽  
Mustafa Kaplankiran ◽  
Celil Toplu ◽  
Mustafa Unlu ◽  
...  

In this study, SRAP and SSR markers were employed to determine genetic relationships among 42 persimmon genotypes (Diospyros kaki Thunb) obtained from Hatay province and 3 persimmon cultivars, 2 of which belong to Diospyros kaki Thunb and one belongs to Diospyros oleifera Cheng. Genetic relationships were determined by using a total of 29 molecular DNA primers (SRAP and SSR). Of these primers, 21 SRAP primer combinations produced a total of 107 bands and 77.6% of them were polymorphic; 8 SSR primers produced 26 polymorphic bands with an average polymorphism ratio of 84.6%. The SRAP and SSR markers produced 4.6 bands as average and the number of bands produced per marker was calculated as 3.6. The lowest similarity was observed between MK-113 (Diospyros oleifera Cheng) and the other genotypes all belongs to Diospyros kaki Thunb (with similarity ratios of 0.41-0.69 for SRAP primers, between 0.25-0.67 for SSR primers). The genotypes/cultivars belongs to Diospyros kaki had similarity ratio between 0.98-1.00 according to SRAP and SSR markers. This synonym or similarity could be results of clonal propagation rather than autogamy.


2021 ◽  
Author(s):  
Varun Hiremath ◽  
Kanwar Pal Singh ◽  
Neelu Jain ◽  
Kishan Swaroop ◽  
Pradeep Kumar Jain ◽  
...  

Abstract Genetic diversity and structure analysis using molecular markers is necessary for efficient utilization and sustainable management of gladiolus germplasm. Genetic analysis of gladiolus germplasm using SSR markers is largely missing due to scarce genomic information. In the present investigation, we report 66.66% cross transferability of Gladiolus palustris SSRs whereas 48% of Iris EST-SSRs were cross transferable across the gladiolus genotypes used in the study. A total of 17 highly polymorphic SSRs revealed a total 58 polymorphic loci ranging from two to six in each locus with an average of 3.41 alleles per marker. PIC values ranged from 0.11 to 0.71 with an average value of 0.48. Four SSRs were selectively neutral based on Ewens-Watterson test. Analysis of genetic structure of 84 gladiolus genotypes divided whole germplasm into two subpopulations. 35 genotypes were assigned to subpopulation 1 whereas 37 to subpopulation 2 and rest of the genotypes recorded as admixture. Analysis of molecular variance indicated maximum variance (53.59%) among individuals within subpopulations whereas 36.55% of variation observed among individuals within total population. Least variation (9.86%) was noticed between two subpopulations. Moderate (FST = 0.10) genetic differentiation of two subpopulations was observed. Grouping pattern of population structure was consistent with UPGMA dendrogram based on simple matching dissimilarity coefficient (ranged from 01.6 to 0.89) and PCoA. Genetic relationships assessed among the genotypes of respective clusters assist the breeders in selecting desirable parents for crossing. SSR markers from present study can be utilized for cultivar identification, conservation and sustainable utilization of gladiolus genotypes for crop improvement.


2021 ◽  
pp. 36-48
Author(s):  
Farhana Afrin Vabna ◽  
Mohammad Zahidul Islam ◽  
Md. Ferdous Rezwan Khan Prince ◽  
Md. Ekramul Hoque

Aims: The aim of the study was to determine the genetic diversity of twenty four Boro rice landraces using rice genome specific twelve well known SSR markers. Study Design: Genomic DNA extraction, PCR amplification, Polyacrylamide gel electrophoresis (PAGE) and data analysis-these steps were followed to perform the research work. Data was analysed with the help of following software; POWERMAKER version 3.25, AlphaEaseFC (Alpha Innotech Corporation) version 4.0. UPGMA dendrogram was constructed using MEGA 5.1 software. Place and Duration of Study: The study was conducted at the Genetic Resources and Seed Division (GRSD), Bangladesh Rice Research Institute (BRRI), Joydebpur, Gazipur, Bangladesh during the period of November 2017 to March 2018. Methodology: Simple Sequence Repeat (SSR) markers were used to assay 24 landraces of Boro rice collected from the Gene Bank of Bangladesh Rice Research Institute (BRRI). Results: A total fifty four (54) alleles were detected, out of which forty five (45) polymorphic alleles were identified. The Polymorphic Information Content (PIC) of SSR markers ranged from 0.08 (RM447) to 0.84 (RM206) with an average value of PIC = 0.49. Gene diversity ranges from 0.08 (RM447) to 0.86 (RM206) with an average value of 0.52. The RM206 marker can be considered as the best marker among the studied markers for 24 rice landraces. Dendrogram based on Nei’s genetic distance using Unweighted Pair Group Method of Arithmetic Mean (UPGMA) indicated the segregation of 24 genotypes into three main clusters. Conclusion: The result revealed that SSR markers are very effective tools in the study of genetic diversity and genetic relationships and this result can be conveniently used for further molecular diversity analysis of rice genotypes to identify diverse parent for the development of high yielding variety in rice.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
L.S. Vianna ◽  
T.N.S. Pereira ◽  
E.A. Santos ◽  
A.P. Viana ◽  
M.G. Pereira ◽  
...  

Genome ◽  
2005 ◽  
Vol 48 (5) ◽  
pp. 802-810 ◽  
Author(s):  
Muwang Li ◽  
Li Shen ◽  
Anying Xu ◽  
Xuexia Miao ◽  
Chengxiang Hou ◽  
...  

To determine genetic relationships among strains of silkworm, Bombyx mori L., 31 strains with different origins, number of generations per year, number of molts per generation, and morphological characters were studied using simple sequence repeat (SSR) markers. Twenty-six primer pairs flanking microsatellite sequences in the silkworm genome were assayed. All were polymorphic and unambiguously separated silkworm strains from each other. A total of 188 alleles were detected with a mean value of 7.2 alleles/locus (range 2–17). The average heterozygosity value for each SSR locus ranged from 0 to 0.60, and the highest one was 0.96 (Fl0516 in 4013). The mean polymorphism index content (PIC) was 0.66 (range 0.12–0.89). Unweighted pair group method with arithmetic means (UPGMA) cluster analysis of Nei's genetic distance grouped silkworm strains based on their origin. Seven major ecotypic silkworm groups were analyzed. Principal components analysis (PCA) for SSR data support their UPGMA clustering. The results indicated that SSR markers are an efficient tool for fingerprinting cultivars and conducting genetic-diversity studies in the silkworm.Key words: silkworm, Bombyx mori L., microsatellites, simple sequence repeat (SSR), genetic diversity.


Genome ◽  
2005 ◽  
Vol 48 (1) ◽  
pp. 108-114 ◽  
Author(s):  
José Miguel Soriano ◽  
Carlos Romero ◽  
Santiago Vilanova ◽  
Gerardo Llácer ◽  
María Luisa Badenes

Genetic relationships among 40 loquat (Eriobotrya japonica (Thunb) Lindl) accessions that originated from different countries and that are part of the germplasm collection of the Instituto Valenciano de Investigaciones Agrarias (IVIA) (Valencia, Spain) were evaluated using microsatellites. Thirty primer pairs flanking microsatellites previously identified in Malus × domestica (Borkh.) were assayed. Thirteen of them amplified polymorphic products and unambiguously distinguished 34 genotypes from the 40 accessions analyzed. Six accessions showing identical marker patterns were Spanish local varieties thought to have been derived from 'Algerie' by a mutational process very common in loquat species. A total of 39 alleles were detected in the population studied, with a mean value of 2.4 alleles per locus. The expected and observed heterozygosities were 0.46 and 51% on average, respectively, leading to a negative value of the Wright's fixation index (–0.20). The values of these parameters indicate a smaller degree of genetic diversity in the set of loquat accessions analyzed than in other members of the Rosaceae family. Unweighted pair-group method (UPGMA) cluster analysis, based on Nei's genetic distance, generally grouped genotypes according to their geographic origins and pedigrees. The high number of alleles and the high expected heterozygosity detected with SSR markers developed in Malus × domestica (Borkh.) make them a suitable tool for loquat cultivar identification, confirming microsatellite marker transportability among genera in the Rosaceae family.Key words: Eriobotrya japonica, SSR markers, microsatellites, genetic diversity.


Botany ◽  
2008 ◽  
Vol 86 (11) ◽  
pp. 1311-1318 ◽  
Author(s):  
Aniko Horvath ◽  
Hélène Christmann ◽  
Frédéric Laigret

Prunus cerasifera (Ehrh.) (cherry or Myrobalan plum) is a diverse species with several recognized subspecies and natural forms. It is used as rootstock or as an ornamental tree, and is considered to be one progenitor of the garden plum ( Prunus domestica L.). This study considers the genetic relationships among different P. cerasifera clones, including horticultural cultivars. Twenty nine P. cerasifera accessions of the Prunus Genetic Resources Collection of INRA were analysed using morphological traits, maternally inherited chloroplastic DNA (cpDNA) markers, and biparentally inherited microsatellite (SSR) markers. Ploidy information was obtained by flow cytometry. Multiple factorial correspondence analysis of morphological descriptors shows important differences between some clones, but most of the samples are grouped. Fifteen haplotypes of cpDNA were identified and clustered into three groups after statistical parsimony analysis. SSR markers revealed a total of 74 alleles, with a mean value of 10.6 alleles per locus. After analysis of ploidy level, P. cerasifera subsp. caspica was shown to have a hexaploid genome. Morphological and molecular data suggest that the taxonomic classification of some subspecies and of P. cerasifera subsp. caspica may need to be revised after analysis of additional individuals.


2018 ◽  
Vol 6 (3) ◽  
pp. 95-109
Author(s):  
Manal Eid

The present study was carried out to conduct drought tolerance in three wheat cultivars including susceptible (Gemmiza7) and tolerant (Sakha93 and Sahel1). Molecular characterization was done by 26 SSR markers located on chromosome7 which was associated with drought tolerance in many previous studies. 26 SSR markers were polymorphic and thus showed 100% polymorphism. The number of alleles per locus varied from 2 to 3 alleles with an average (2.62). The polymorphism information content (PIC) value ranged from 0.34 to 0.59, with a mean of 0.51. The discrimination power (Dp) value ranged between 0.67 and 0.78 with an average of 0.71 per locus and Heterozygosity (He) value varied from 0.44 to 0.67 with an average of 0.59. The genetic relationships estimated by the polymorphism of SSR markers revealed a greater level of genetic variability in wheat cultivars of wide adaptability and applicability. Whereas an average of combined probability value for the SSR markers was 6.15 x 10-16, suggests the capability of the marker system to distinguish identity and purity of wheat cultivars. In addition to the SSR markers revealed various bands that were either absent or present within tolerant cultivars (Sakha93 and Sahel1) which were altogether absent in susceptible cultivar (Gemmiza7). Also, SSRs of diagnostic and curatorial importance were discerned as ‘stand-alone’ molecular descriptors for barcoding the application of DNA sequences of standardized genetic markers for the identification of wheat cultivars. However, the genetic information in this study could provide useful information to address breeding programs and germplasm resource management.


2020 ◽  
Author(s):  
Binbin He ◽  
Ruimei Geng ◽  
Lirui Cheng ◽  
Xianbin Yang ◽  
Hongmei Ge ◽  
...  

Abstract Background: At present, the distinctness, uniformity, and stability (DUS) testing of flue-cured tobacco ( Nicotiana tabacum L.) depends on field morphological identification, which is problematic in that it is intensive, time-consuming, and susceptible to environmental impacts. In order to improve the efficiency and accuracy of tobacco DUS testing, the development of a molecular marker-based method for genetic diversity identification is urgently needed. Results: In total, 91 simple sequence repeats (SSR) markers with clear and polymorphic amplification bands were obtained with polymorphism information content, Nei index, and Shannon information index values of 0.3603, 0.4040, and 0.7228, respectively. Clustering analysis showed that the 33 study varieties, which are standard varieties for flue-cured tobacco DUS testing, could all be distinguished from one another. Further analysis showed that a minimum of 25 markers were required to identify the genetic diversity of these varieties. Following the principle of two markers per linkage group, 48 pairs of SSR markers were selected. Correlation analysis showed that the genetic relationships revealed by the 48 SSR markers were consistent with those found using the 91 SSR markers. Conclusions: The genetic fingerprints of the 33 standard varieties of flue-cured tobacco were constructed using 48 SSR markers, and an SSR marker-based identification technique for new tobacco varieties was developed. This study provides a reliable technological approach for determining the novelty of new tobacco varieties and offers a solid technical basis for the accreditation and protection of new tobacco varieties.


Sign in / Sign up

Export Citation Format

Share Document