Biotic and abiotic stress tolerance through CRISPR-Cas mediated genome editing

Author(s):  
Satabdi Ghosh ◽  
Gargee Dey
Author(s):  
Ali Razzaq ◽  
Ghulam Mustafa ◽  
Muhammad Amjad Ali ◽  
Muhammad Sarwar Khan ◽  
Faiz Ahmad Joyia

Abstract This chapter discusses the applications of CRISPR-mediated genome editing to improve the abiotic stress tolerance (such as drought, heat, waterlogging and cold tolerance) of maize. CRISPR/Cas9 has great potential for maize genome manipulation at desired sites. By using CRISPR/Cas9-mediated genome editing, numerous genes can be targeted to produce elite maize cultivars that minimize the challenges of abiotic stresses. In the future, more precise and accurate variants of the CRISPR/Cas9 toolbox are expected to be used for maize yield improvement.


Crop Science ◽  
2020 ◽  
Author(s):  
Shivali Sharma ◽  
Rajan Sharma ◽  
Mahesh Pujar ◽  
Devvart Yadav ◽  
Yashpal Yadav ◽  
...  

2015 ◽  
Vol 39 ◽  
pp. 911-919 ◽  
Author(s):  
Mahmood-ur ANSARI ◽  
Tayyaba SHAHEEN ◽  
Shazia Anwer BUKHARI ◽  
Tayyab HUSNAIN

2014 ◽  
Vol 27 (1) ◽  
pp. 158 ◽  
Author(s):  
Ankita Sarkar ◽  
Jai Singh Patel ◽  
Sudheer Yadav ◽  
Birinchi K. Sarma ◽  
Jai Singh Srivastava ◽  
...  

Author(s):  
M Ahmad ◽  
Q Ali ◽  
MM Hafeez ◽  
A Malik

The field of biotechnology has extraordinary influence on science, law, the administrative condition social insurance, and business throughout the world. As the starting of agriculture, people have been manipulating crops to improve the yield and quantity. Product yields throughout the world are essentially diminished by the activity of herbivorous insects, pathogens, and parasites. Natural environmental stresses make this circumstance significantly worse. Biotechnology can be used to increase the yield of food crops, to improve biotic and abiotic stress tolerance, to modify the traits of the plant (e.g. oil content, percentage of lignin, cell structure), to make the conversion to liquid biofuels more efficient. Various genes have been discovered for biotic and abiotic stress tolerance. The genes discovered for biotic stress are aryloxyalkanoate, dioxygenase, enzymes (aad-1), nitrilase, Cry1Ac, Cry2AB, GTgene, AFP (anti-freezing protein gene) gene, Chitinase II and III gene, and Rps1-k. The genes discovered for abiotic stress are SgNCED1, SgNCED1, USP2, HSP70, BADH, and ALO, PVNCED1, HVA1, LeNCED1. CRISPRs (clustered regularly interspaced short palindromic repeats) are the short DNA sequences present in bacteria and archaeal genomes which are now currently used by researchers to edit the genome. In different plant species (calli, leaf discs) protoplasts have been successfully used to edit their genome through CRISPR/Cas9 system. The aims of the applications are to increase resistance to abiotic or biotic stress, to engineer metabolic pathways, and to increase grain yield. Incorporation of modern biotechnology, with regular traditional practices in a sustainable way, can fulfill the objective of achieving food security for the present and as well as in future.


2020 ◽  
Author(s):  
Sinan Meriç ◽  
Alp Ayan ◽  
Çimen Atak

In last decades, plants were increasingly subjected to multiple environmental abiotic stress factors as never before due to their stationary nature. Excess urbanization following the intense industrial applications introduced combinations of abiotic stresses as heat, drought, salinity, heavy metals etc. to plants in various intensities. Technological advancements brought novel biotechnological tools to the abiotic stress tolerance area as an alternative to time and money consuming traditional crop breeding activities as well as they brought vast majority of the problem themselves. Discoveries of single gene (as osmoprotectant, detoxyfying enzyme, transporter protein genes etc.) and multi gene (biomolecule synthesis, heat shock protein, regulatory transcription factor and signal transduction genes etc.) targets through functional genomic approaches identified abiotic stress responsive genes through EST based cDNA micro and macro arrays. In nowadays, genetic engineering and genome editing tools are present to transfer genes among different species and modify these target genes in site specific, even single nuclotide specific manner. This present chapter will evaluate genomic engineering approaches and applications targeting these abiotic stress tolerance responsive mechanisms as well as future prospects of genome editing applications in this field.


Sign in / Sign up

Export Citation Format

Share Document