dioxygenase enzymes
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 11 ◽  
Author(s):  
Rebekah L. I. Crake ◽  
Eleanor R. Burgess ◽  
Janice A. Royds ◽  
Elisabeth Phillips ◽  
Margreet C. M. Vissers ◽  
...  

Gliomas are a heterogeneous group of cancers that predominantly arise from glial cells in the brain, but may also arise from neural stem cells, encompassing low-grade glioma and high-grade glioblastoma. Whereas better diagnosis and new treatments have improved patient survival for many cancers, glioblastomas remain challenging with a highly unfavorable prognosis. This review discusses a super-family of enzymes, the 2-oxoglutarate dependent dioxygenase enzymes (2-OGDD) that control numerous processes including epigenetic modifications and oxygen sensing, and considers their many roles in the pathology of gliomas. We specifically describe in more detail the DNA and histone demethylases, and the hypoxia-inducible factor hydroxylases in the context of glioma, and discuss the substrate and cofactor requirements of the 2-OGDD enzymes. Better understanding of how these enzymes contribute to gliomas could lead to the development of new treatment strategies.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 430
Author(s):  
Abel D. Ang ◽  
Margreet C. M. Vissers ◽  
Eleanor R. Burgess ◽  
Margaret J. Currie ◽  
Gabi U. Dachs

Tumour-associated macrophages (TAMs) are ubiquitously present in tumours and commonly associated with poor prognosis. In immune cells, ascorbate affects epigenetic regulation, differentiation and phenotype via its co-factor activity for the 2-oxoglutarate dependent dioxygenase enzymes. Here, we determined the effect of ascorbate on TAM development in response to tumour microenvironmental cues. Naïve murine bone marrow monocytes were cultured with Lewis Lung Carcinoma conditioned media (LLCM) or macrophage colony-stimulating factor (MCSF) to encourage the development into tumour-associated macrophages. Cells were stimulated with hypoxia (1% O2), with or without ascorbate (500 µM) supplementation. Cells and media were harvested for gene, cell surface marker and protein analyses. LLCM supported bone marrow monocyte growth with >90% of cells staining CD11b+F4/80+, indicative of monocytes/macrophages. LLCM-grown cells showed increased expression of M2-like and TAM genes compared to MCSF-grown cells, which further increased with hypoxia. In LLCM-grown cells, ascorbate supplementation was associated with increased F4/80 cell surface expression, and altered gene expression and protein secretion. Our study shows that ascorbate modifies monocyte phenotype when grown under tumour microenvironmental conditions, but this was not clearly associated with either a pro- or anti-tumour phenotype, and reflects a complex and nuanced response of macrophages to ascorbate. Overall, ascorbate supplementation clearly has molecular consequences for TAMs, but functional and clinical consequences remain unknown.


Author(s):  
M Ahmad ◽  
Q Ali ◽  
MM Hafeez ◽  
A Malik

The field of biotechnology has extraordinary influence on science, law, the administrative condition social insurance, and business throughout the world. As the starting of agriculture, people have been manipulating crops to improve the yield and quantity. Product yields throughout the world are essentially diminished by the activity of herbivorous insects, pathogens, and parasites. Natural environmental stresses make this circumstance significantly worse. Biotechnology can be used to increase the yield of food crops, to improve biotic and abiotic stress tolerance, to modify the traits of the plant (e.g. oil content, percentage of lignin, cell structure), to make the conversion to liquid biofuels more efficient. Various genes have been discovered for biotic and abiotic stress tolerance. The genes discovered for biotic stress are aryloxyalkanoate, dioxygenase, enzymes (aad-1), nitrilase, Cry1Ac, Cry2AB, GTgene, AFP (anti-freezing protein gene) gene, Chitinase II and III gene, and Rps1-k. The genes discovered for abiotic stress are SgNCED1, SgNCED1, USP2, HSP70, BADH, and ALO, PVNCED1, HVA1, LeNCED1. CRISPRs (clustered regularly interspaced short palindromic repeats) are the short DNA sequences present in bacteria and archaeal genomes which are now currently used by researchers to edit the genome. In different plant species (calli, leaf discs) protoplasts have been successfully used to edit their genome through CRISPR/Cas9 system. The aims of the applications are to increase resistance to abiotic or biotic stress, to engineer metabolic pathways, and to increase grain yield. Incorporation of modern biotechnology, with regular traditional practices in a sustainable way, can fulfill the objective of achieving food security for the present and as well as in future.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Guilherme Pinto Cauduro ◽  
Ana Lusia Leal ◽  
Tiago Falcón Lopes ◽  
Marcela Marmitt ◽  
Victor Hugo Valiati

Petroleum is the major energy matrix in the world whose refining generates chemical byproducts that may damage the environment. Among such waste, polycyclic aromatic hydrocarbons (PAH) are considered persistent pollutants. Sixteen of these are considered priority for remediation, and among them is benzo(a)pyrene. Amid remediation techniques, bioremediation stands out. The genus Burkholderia is amongst the microorganisms known for being capable of degrading persistent compounds; its strains are used as models to study such ability. High-throughput sequencing allows researchers to reach a wider knowledge about biodegradation by bacteria. Using transcripts and mRNA analysis, the genomic regions involved in this aptitude can be detected. To unravel these processes, we used the model B. vietnamiensis strain G4 in two experimental groups: one was exposed to benzo(a)pyrene and the other one (control) was not. Six transcriptomes were generated from each group aiming to compare gene expression and infer which genes are involved in degradation pathways. One hundred fifty-six genes were differentially expressed in the benzo(a)pyrene exposed group, from which 33% are involved in catalytic activity. Among these, the most significant genomic regions were phenylacetic acid degradation protein paaN, involved in the degradation of organic compounds to obtain energy; oxidoreductase FAD-binding subunit, related to the regulation of electrons within groups of dioxygenase enzymes with potential to cleave benzene rings; and dehydrogenase, described as accountable for phenol degradation. These data provide the basis for understanding the bioremediation of benzo(a)pyrene and the possible applications of this strain in polluted environments.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jimmy H. W. Saw ◽  
Takuro Nunoura ◽  
Miho Hirai ◽  
Yoshihiro Takaki ◽  
Rachel Parsons ◽  
...  

ABSTRACT It has been hypothesized that the abundant heterotrophic ocean bacterioplankton in the SAR202 clade of the phylum Chloroflexi evolved specialized metabolisms for the oxidation of organic compounds that are resistant to microbial degradation via common metabolic pathways. Expansions of paralogous enzymes were reported and implicated in hypothetical metabolism involving monooxygenase and dioxygenase enzymes. In the proposed metabolic schemes, the paralogs serve the purpose of diversifying the range of organic molecules that cells can utilize. To further explore SAR202 evolution and metabolism, we reconstructed single amplified genomes and metagenome-assembled genomes from locations around the world that included the deepest ocean trenches. In an analysis of 122 SAR202 genomes that included seven subclades spanning SAR202 diversity, we observed additional evidence of paralog expansions that correlated with evolutionary history, as well as further evidence of metabolic specialization. Consistent with previous reports, families of flavin-dependent monooxygenases were observed mainly in the group III SAR202 genomes, and expansions of dioxygenase enzymes were prevalent in those of group VII. We found that group I SAR202 genomes encode expansions of racemases in the enolase superfamily, which we propose evolved for the degradation of compounds that resist biological oxidation because of chiral complexity. Supporting the conclusion that the paralog expansions indicate metabolic specialization, fragment recruitment and fluorescent in situ hybridization (FISH) with phylogenetic probes showed that SAR202 subclades are indigenous to different ocean depths and geographical regions. Surprisingly, some of the subclades were abundant in surface waters and contained rhodopsin genes, altering our understanding of the ecological role of SAR202 species in stratified water columns. IMPORTANCE The oceans contain an estimated 662 Pg C in the form of dissolved organic matter (DOM). Information about microbial interactions with this vast resource is limited, despite broad recognition that DOM turnover has a major impact on the global carbon cycle. To explain patterns in the genomes of marine bacteria, we propose hypothetical metabolic pathways for the oxidation of organic molecules that are resistant to oxidation via common pathways. The hypothetical schemes we propose suggest new metabolic pathways and classes of compounds that could be important for understanding the distribution of organic carbon throughout the biosphere. These genome-based schemes will remain hypothetical until evidence from experimental cell biology can be gathered to test them. Our findings also fundamentally change our understanding of the ecology of SAR202 bacteria, showing that metabolically diverse variants of these cells occupy niches spanning all depths and are not relegated to the dark ocean.


2019 ◽  
Author(s):  
Jimmy H.W. Saw ◽  
Takuro Nunoura ◽  
Miho Hirai ◽  
Yoshihiro Takaki ◽  
Rachel Parsons ◽  
...  

AbstractIt has been hypothesized that abundant heterotrophic ocean bacterioplankton in the SAR202 clade of the phylumChloroflexievolved specialized metabolism for the oxidation of organic compounds that are resistant to microbial degradation via common metabolic pathways. Expansions of paralogous enzymes were reported and implicated in hypothetical metabolism involving monooxygenase and dioxygenase enzymes. In the metabolic schemes proposed, the paralogs serve the purpose of diversifying the range of organic molecules that cells can utilize. To further explore this question, we reconstructed SAR202 single amplified genomes and metagenome-assembled genomes from locations around the world, including the deepest ocean trenches. In analyses of 122 SAR202 genomes that included six subclades spanning SAR202 diversity, we observed additional evidence of paralog expansions that correlated with evolutionary history, and further evidence of metabolic specialization. Consistent with previous reports, families of flavin-dependent monooxygenases were observed mainly in the Group III SAR202, in the proposed classMonstramariaand expansions of dioxygenase enzymes were prevalent in Group IV. We found that Group I SAR202 encode expansions of racemases in the enolase superfamily, which we propose evolved for the degradation of compounds that resist biological oxidation because of chiral complexity. Supporting the conclusion that the paralog expansions indicate metabolic specialization, fragment recruitment and fluorescencein situhybridization with phylogenetic probes showed that SAR202 subclades are indigenous to different ocean depths and geographical regions. Surprisingly, some of the subclades were abundant in surface waters and contained rhodopsin genes, altering our understanding of the ecological role of SAR202 in stratified water columns.ImportanceThe oceans contain an estimated 662 Pg C of dissolved organic carbon (DOC). Information about microbial interactions with this vast resource is limited, despite broad recognition that DOM turnover has a major impact on the global carbon cycle. To explain patterns in the genomes of marine bacteria we propose hypothetical metabolic pathways for the oxidation of organic molecules that are resistant to oxidation via common pathways. The hypothetical schemes we propose suggest new metabolism and classes of compounds that could be important for understanding of the distribution of organic carbon throughout the biosphere. These genome-based schemes will remain hypothetical until evidence from experimental cell biology can be gathered to test them, but until then they provide a perspective that directs our attention to the biochemistry of resistant DOM metabolism. Our findings also fundamentally change our understanding of the ecology of SAR202, showing that metabolically diverse variants of these cells occupy niches spanning all depths, and are not relegated to the dark ocean.


Marine Drugs ◽  
2018 ◽  
Vol 16 (8) ◽  
pp. 268 ◽  
Author(s):  
Fengjie Li ◽  
Dorte Janussen ◽  
Christian Peifer ◽  
Ignacio Pérez-Victoria ◽  
Deniz Tasdemir

The Antarctic deep-sea sponge Latrunculia (Latrunculia) biformis Kirkpatrick, 1908 (Class Demospongiae Sollas, Order Poecilosclerida Topsent, Latrunculiidae Topsent) was selected for chemical analyses due to its potent anticancer activity. Metabolomic analysis of its crude extract by HRMS/MS-based molecular networking showed the presence of several clusters of pyrroloiminoquinone alkaloids, i.e., discorhabdin and epinardin-type brominated pyridopyrroloquinolines and tsitsikammamines, the non-brominated bis-pyrroloiminoquinones. Molecular networking approach combined with a bioactivity-guided isolation led to the targeted isolation of the known pyrroloiminoquinone tsitsikammamine A (1) and its new analog 16,17-dehydrotsitsikammamine A (2). The chemical structures of the compounds 1 and 2 were elucidated by spectroscopic analysis (one-dimensional (1D) and two-dimensional (2D) NMR, HR-ESIMS). Due to minute amounts, molecular modeling and docking was used to assess potential affinities to potential targets of the isolated compounds, including DNA intercalation, topoisomerase I-II, and indoleamine 2,3-dioxygenase enzymes. Tsitsikammamines represent a small class of pyrroloiminoquinone alkaloids that have only previously been reported from the South African sponge genus Tsitsikamma Samaai & Kelly and an Australian species of the sponge genus Zyzzya de Laubenfels. This is the first report of tsitsikammamines from the genus Latrunculia du Bocage and the successful application of molecular networking in the identification of comprehensive chemical inventory of L. biformis followed by targeted isolation of new molecules. This study highlights the high productivity of secondary metabolites of Latrunculia sponges and may shed new light on their biosynthetic origin and chemotaxonomy.


2018 ◽  
Vol 47 (12) ◽  
pp. 4049-4053 ◽  
Author(s):  
Ramamoorthy Ramasubramanian ◽  
Karunanithi Anandababu ◽  
Mukesh Kumar ◽  
Ramasamy Mayilmurugan
Keyword(s):  

The substrate-bound nickel(ii) complexes of the 3N ligand are synthesized as the models for Ni(ii)-dependent enzymes. They exhibited regioselective C–C cleavage using dioxygen.


2017 ◽  
Vol 98 (2) ◽  
pp. 52-66 ◽  
Author(s):  
Bibekananda Sarkar ◽  
Mahesh Kulharia ◽  
Anil K. Mantha
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document