Analysis of Grain Size Evolution of Sintered Al–4wt.%B4C Preforms Subjected to Hot Compression

2018 ◽  
Vol 7 (2) ◽  
pp. 176-183 ◽  
Author(s):  
R. Seetharam ◽  
S. Kanmani Subbu ◽  
M. J. Davidson
Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 492
Author(s):  
Jan Foder ◽  
Jaka Burja ◽  
Grega Klančnik

Titanium additions are often used for boron factor and primary austenite grain size control in boron high- and ultra-high-strength alloys. Due to the risk of formation of coarse TiN during solidification the addition of titanium is limited in respect to nitrogen. The risk of coarse nitrides working as non-metallic inclusions formed in the last solidification front can degrade fatigue properties and weldability of the final product. In the presented study three microalloying systems with minor additions were tested, two without any titanium addition, to evaluate grain size evolution and mechanical properties with pre-defined as-cast, hot forging, hot rolling, and off-line heat-treatment strategy to meet demands for S1100QL steel. Microstructure evolution from hot-forged to final martensitic microstructure was observed, continuous cooling transformation diagrams of non-deformed austenite were constructed for off-line heat treatment, and the mechanical properties of Nb and V–Nb were compared to Ti–Nb microalloying system with a limited titanium addition. Using the parameters in the laboratory environment all three micro-alloying systems can provide needed mechanical properties, especially the Ti–Nb system can be successfully replaced with V–Nb having the highest response in tensile properties and still obtaining satisfying toughness of 27 J at –40 °C using Charpy V-notch samples.


2009 ◽  
Vol 475 (1-2) ◽  
pp. 893-897 ◽  
Author(s):  
Zheng Chen ◽  
Feng Liu ◽  
Wei Yang ◽  
Haifeng Wang ◽  
Gencang Yang ◽  
...  

Materials ◽  
2017 ◽  
Vol 10 (2) ◽  
pp. 161 ◽  
Author(s):  
Guoai He ◽  
Liming Tan ◽  
Feng Liu ◽  
Lan Huang ◽  
Zaiwang Huang ◽  
...  

2021 ◽  
Vol 15 (9) ◽  
pp. 4589-4605
Author(s):  
Mark D. Behn ◽  
David L. Goldsby ◽  
Greg Hirth

Abstract. Viscous flow in ice is often described by the Glen flow law – a non-Newtonian, power-law relationship between stress and strain rate with a stress exponent n ∼ 3. The Glen law is attributed to grain-size-insensitive dislocation creep; however, laboratory and field studies demonstrate that deformation in ice can be strongly dependent on grain size. This has led to the hypothesis that at sufficiently low stresses, ice flow is controlled by grain boundary sliding, which explicitly incorporates the grain size dependence of ice rheology. Experimental studies find that neither dislocation creep (n ∼ 4) nor grain boundary sliding (n ∼ 1.8) have stress exponents that match the value of n ∼ 3 in the Glen law. Thus, although the Glen law provides an approximate description of ice flow in glaciers and ice sheets, its functional form is not explained by a single deformation mechanism. Here we seek to understand the origin of the n ∼ 3 dependence of the Glen law by using the “wattmeter” to model grain size evolution in ice. The wattmeter posits that grain size is controlled by a balance between the mechanical work required for grain growth and dynamic grain size reduction. Using the wattmeter, we calculate grain size evolution in two end-member cases: (1) a 1-D shear zone and (2) as a function of depth within an ice sheet. Calculated grain sizes match both laboratory data and ice core observations for the interior of ice sheets. Finally, we show that variations in grain size with deformation conditions result in an effective stress exponent intermediate between grain boundary sliding and dislocation creep, which is consistent with a value of n = 3 ± 0.5 over the range of strain rates found in most natural systems.


2012 ◽  
Vol 715-716 ◽  
pp. 492-497 ◽  
Author(s):  
Darren G. Cram ◽  
Hatem S. Zurob ◽  
Yves J.M. Bréchet ◽  
Christopher R. Hutchinson

A physically-based model for nucleation during discontinuous dynamic recrystallization (DDRX) has been developed and is coupled with polyphase plasticity and grain growth models to predict the macroscopic stress and grain size evolution during straining. The nucleation model is based on a recent description for static recrystallization and considers the dynamically evolving substructure size. Model predictions are compared with literature results on DDRX in pure Cu as a function of initial grain size, deformation temperature and strain-rate. The characteristic DRX features such as single to multiple peak stress transitions and convergence towards a steady-state stress and grain size are quantitatively reproduced by the model.


Author(s):  
David J. Topping ◽  
David M. Rubin ◽  
Jonathan M. Nelson ◽  
Paul J. Kinzel ◽  
James P. Bennett

Author(s):  
Franka Pravdic ◽  
H. Kilian ◽  
M. Brandecker ◽  
C. Wögerer ◽  
G. Traxler
Keyword(s):  

2016 ◽  
Vol 80 ◽  
pp. 02012 ◽  
Author(s):  
Zhang Haiyan ◽  
Zhang Shihong ◽  
Cheng Ming

Sign in / Sign up

Export Citation Format

Share Document