scholarly journals The role of iron(III) oxide in chloroprene and butadiene rubber blends’ cross-linking, structure, thermal and mechanical characteristics

2019 ◽  
Vol 28 (4) ◽  
pp. 313-323 ◽  
Author(s):  
Aleksandra Smejda-Krzewicka ◽  
Anna Olejnik ◽  
Krzysztof Strzelec
2019 ◽  
Vol 77 (8) ◽  
pp. 4131-4146 ◽  
Author(s):  
Aleksandra Smejda-Krzewicka ◽  
Anna Olejnik ◽  
Krzysztof Strzelec

Abstract This paper discusses the role of metal oxides (MeO) in the cross-linking process and useful properties of chloroprene and butadiene rubber (CR/BR) blends. Iron(III) oxide (Fe2O3), iron(II,III) oxide (Fe3O4), silver(I) oxide (Ag2O) or zinc oxide were used. It has found that every proposed metal oxide can be used as a cross-linking agent of the CR/BR blends. The degree of cross-linking was evaluated by means of vulcametric parameters, equilibrium swelling in selected solvents and Mooney–Rivlin elasticity constants. The properties of the cured CR/BR products, such as tensile strength, stress at elongation, tension set under constant elongation and compression set, were also investigated. The results revealed that all CR/BR/MeO vulcanizates were characterized by a high cross-linking degree and satisfying mechanical properties. The most important advantage of obtained rubber goods is very high resistance to flame. The increase in the oxygen index value for the CR/BR/Fe2O3, CR/BR/Fe3O4 and CR/BR/Ag2O vulcanizates compared to the standard cross-linked chloroprene rubber showed that presented metal oxides provided a positive effect on the resistance to flame of the new CR/BR/MeO composites. Satisfactory properties of the studied blends are related to the presence of the interelastomer bonding of both rubbers in the compositions.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2161 ◽  
Author(s):  
Ján Kruželák ◽  
Viera Karlíková ◽  
Rastislav Dosoudil ◽  
Katarína Tomanová ◽  
Ivan Hudec

Strontium ferrite was compounded with acrylonitrile butadiene rubber to prepare rubber magnetic composites. For cross-linking of the prepared materials, peroxide curing systems consisting of dicumyl peroxide as curing agent and zinc salts of acrylic and methacrylic acids as co-agents were used. The amount of strontium ferrite was kept constant in all experiments, while the main objective of the work was to investigate the composition of curing system and both types of co-agents on the cross-linking, physical-mechanical, dynamic and magnetic properties of the rubber magnets. The results showed that the change in composition of curing system has significant influence on cross-link density and properties of the tested composite materials. With an increasing amount of zinc based co-agents, significant improvement of tensile strength was achieved. The application of zinc based co-agents in peroxide vulcanization of rubber magnetic composites leads to the preparation of rubber magnets with not only good magnetic properties, but also with improved physical-mechanical characteristics.


2021 ◽  
pp. 51967
Author(s):  
Abitha Vayyaprontavida Kaliyathan ◽  
Ajay Vasudeo Rane ◽  
Miroslav Huskic ◽  
Krishnan Kanny ◽  
Matjaz Kunaver ◽  
...  

1995 ◽  
Vol 73 (05) ◽  
pp. 850-856 ◽  
Author(s):  
F D Rubens ◽  
D W Perry ◽  
M W C Hatton ◽  
P D Bishop ◽  
M A Packham ◽  
...  

SummaryPlatelet accumulation on small- and medium-calibre vascular grafts plays a significant role in graft occlusion. We examined platelet accumulation on the surface of fibrin-coated polyethylene tubing (internal diameter 0.17 cm) during 10 min of flow (l0ml/min) at high wall shear rate (764 s-1). Washed platelets labelled with 51Cr were resuspended in Tyrode solution containing albumin, apyrase and red blood cells (hematocrit 40%). When the thrombin that was used to form the fibrin-coated surface was inactivated with FPRCH2C1 before perfusion of the tubes with the platelet:red blood cell suspension, the accumulation of platelets was 59,840 ± 27,960 platelets per mm2, whereas accumulation on fibrin with residual active thrombin was 316,750 ± 32,560 platelets per mm2 (n = 4). When the fibrin on the surface was cross-linked by including recombinant factor XIII (rFXIII) in the fibrinogen solution used to prepare the fibrin-coated surface, platelet accumulation, after thrombin neutralization, was reduced by the cross-linking from 46,974 ± 9702 to 36,818 ± 7964 platelets per mm2 (n = 12, p <0.01). Platelet accumulation on tubes coated with D-dimer was ten times less than on tubes coated with D-domain; this finding also supports the observation that cross-linking of fibrin with the formation of γ-γ dimers reduces platelet accumulation on the fibrin-coated surface. Thrombin-activated platelets themselves were shown to cross-link fibrin when they had adhered to it during perfusion, or in a static system in which thrombin was used to form clots from FXIII-free fibrinogen in the presence of platelets. Thus, cross-linking of fibrin by FXIII in plasma or from platelets probably decreases the reactivity of the fibrin-containing thrombi to platelets by altering the lysine residue at or near the platelet-binding site of each of the γ-chains of the fibrinogen which was converted into the fibrin of these thrombi.


1997 ◽  
Vol 77 (05) ◽  
pp. 0959-0963 ◽  
Author(s):  
Lisa Seale ◽  
Sarah Finney ◽  
Roy T Sawyer ◽  
Robert B Wallis

SummaryTridegin is a potent inhibitor of factor Xllla from the leech, Haementeria ghilianii, which inhibits protein cross-linking. It modifies plasmin-mediated fibrin degradation as shown by the absence of D-dimer and approximately halves the time for fibrinolysis. Plasma clots formed in the presence of Tridegin lyse more rapidly when either streptokinase, tissue plasminogen activator or hementin is added 2 h after clot formation. The effect of Tridegin is markedly increased if clots are formed from platelet-rich plasma. Platelet-rich plasma clots are lysed much more slowly by the fibrinolytic enzymes used and if Tridegin is present, the rate of lysis returns almost to that of platelet- free clots. These studies indicate the important role of platelets in conferring resistance to commonly used fibrinolytic enzymes and suggest that protein cross-linking is an important step in this effect. Moreover they indicate that Tridegin, a small polypeptide, may have potential as an adjunct to thrombolytic therapy.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


2021 ◽  
pp. 009524432110061
Author(s):  
Bo Yang ◽  
Balakrishnan Nagarajan ◽  
Pierre Mertiny

Polymers may absorb fluids from their surroundings via the natural phenomenon of swelling. Dimensional changes due to swelling can affect the function of polymer components, such as in the case of seals, microfluidic components and electromechanical sensors. An understanding of the swelling behavior of polymers and means for controlling it can improve the design of polymer components, for example, for the previously mentioned applications. Carbon-based fillers have risen in popularity to be used for the property enhancement of resulting polymer composites. The present investigation focuses on the effects of three carbon-based nano-fillers (graphene nano-platelets, carbon black, and graphene nano-scrolls) on the dimensional changes of polydimethylsiloxane composites due to swelling when immersed in certain organic solvents. For this study, a facile and expedient methodology comprised of optical measurements in conjunction with digital image analysis was developed as the primary experimental technique to quantify swelling dimensional changes of the prepared composites. Other experimental techniques assessed polymer cross-linking densities and elastic mechanical properties of the various materials. The study revealed that the addition of certain carbon-based nano-fillers increased the overall swelling of the composites. The extent of swelling further depended on the organic solvent in which the composites were immersed in. Experimental findings are contrasted with published models for swelling prediction, and the role of filler morphology on swelling behavior is discussed.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 616
Author(s):  
Ján Kruželák ◽  
Andrea Kvasničáková ◽  
Klaudia Hložeková ◽  
Rastislav Dosoudil ◽  
Marek Gořalík ◽  
...  

In the present work, composite materials were prepared by incorporation of manganese-zinc ferrite, carbon black and combination of ferrite and carbon black into acrylonitrile-butadiene rubber (NBR). For cross-linking of composites, standard sulfur-based curing system was applied. The main goal was to investigate the influence of the fillers on the physical-mechanical properties of composites. Then, the electromagnetic absorption shielding ability was investigated in the frequency range 1 MHz–3 GHz. The results revealed that composites filled with ferrite provide sufficient absorption shielding performance in the tested frequency range. On the other hand, ferrite behaves as an inactive filler and deteriorates the physical-mechanical characteristics of composites. Carbon black reinforces the rubber matrix and contributes to the improvement of physical-mechanical properties. However, composites filled with carbon black are not able to absorb electromagnetic radiation in the given frequency range. Finally, the combination of carbon black and ferrite resulted in the modification of both physical-mechanical characteristics and absorption shielding ability of hybrid composites.


Sign in / Sign up

Export Citation Format

Share Document