scholarly journals Bone regeneration using bilayer bone augmentation around dental implants: A preliminary study by micro-CT in dogs

2016 ◽  
Vol 13 (3) ◽  
pp. 304-310
Author(s):  
Woo-Sung Choi ◽  
Hyun-Joong Yoon
2015 ◽  
Vol 21 (6) ◽  
pp. 705-715 ◽  
Author(s):  
M. Fantini ◽  
F. De Crescenzio ◽  
L. Ciocca ◽  
F. Persiani

Purpose – The purpose of this paper is to describe two different approaches for manufacturing pre-formed titanium meshes to assist prosthetically guided bone regeneration of atrophic maxillary arches. Both methods are based on the use of additive manufacturing (AM) technologies and aim to limit at the minimal intervention the bone reconstructive surgery by virtual planning the surgical intervention for dental implants placement. Design/methodology/approach – Two patients with atrophic maxillary arches were scheduled for bone augmentation using pre-formed titanium mesh with particulate autogenous bone graft and alloplastic material. The complete workflow consists of four steps: three-dimensional (3D) acquisition of medical images and virtual planning, 3D modelling and design of the bone augmentation volume, manufacturing of biomodels and pre-formed meshes, clinical procedure and follow up. For what concerns the AM, fused deposition modelling (FDM) and direct metal laser sintering (DMLS) were used. Findings – For both patients, a post-operative control CT examination was scheduled to evaluate the progression of the regenerative process and verify the availability of an adequate amount of bone before the surgical intervention for dental implants placement. In both cases, the regenerated bone was sufficient to fix the implants in the planned position, improving the intervention quality and reducing the intervention time during surgery. Originality/value – A comparison between two novel methods, involving AM technologies are presented as viable and reproducible methods to assist the correct bone augmentation of atrophic patients, prior to implant placement for the final implant supported prosthetic rehabilitation.


2020 ◽  
Author(s):  
Brent Allan ◽  
Rui Ruan ◽  
Euphemie Landao-Bassonga ◽  
Nicholas Gillman ◽  
Tao Wang ◽  
...  

Abstract Background: Treatment of cortical bone defects is a clinical challenge. Guided bone regeneration (GBR), commonly used in oral in maxillofacial dental surgery, may show promise for orthopedic application in repair of cortical defects. However, a limitation in the use of GBR for cortical bone defects is the lack of an ideal scaffold that provides sufficient mechanical support to bridge the cortical bone with minimal interference in the repair process. We have developed a new collagen membrane, CelGroTM, for use in GBR. We report the material characterisation of CelGroTM, and evaluate the performance of CelGroTM in translational preclinical and clinical studies. Methods: Scanning electron microscopy (SEM), micro computed tomography (micro-CT) and transmission electron microscopy (TEM) were used to examine the structural morphology of CelGroTM. Purity and biochemical composition of CelGroTM was evaluated by Western-blot, immunohistochemistry and confocal microscopy. Physical and chemical properties of CelGroTM were examined and compared with another commercially available collagen membrane. The pre-clinical evaluation was conducted using a cortical bone defect model in the New Zealand white rabbit. Cortical bone regeneration in defects of the femoral diaphysis were evaluated at 30 days and 60 days after intervention, by micro-CT and histology. A clinical study to evaluate the performance of CelGroTM in GBR for treatment of bone augmentation surrounding dental implants was also performed. The clinical outcomes were evaluated by semi quantitative tissue condition assessments and cone-beam computed tomography (CBCT) scan. Results: CelGroTM has a bilayer structure of different fibre alignment and is composed almost exclusively of type I collagen. CelGroTM was found to be completely acellular and a clinically significant xenoantigen, α -gal, was not detected. CelGroTM displayed less deformity and better mechanical strength as compared to Bio-Gide ® . In the preclinical study, CelGroTM demonstrated enhanced bone-modelling activity and cortical bone healing. Micro-CT evaluation showed early bony bridging over the defect area 30 days post-operatively, and nearly complete restoration of mature cortical bone at the bone defect site 60 days post- operatively. Histological analysis at day 60 after surgery further confirmed that CelGroTM enables bridging of the cortical bone defect by induction of newly-formed cortical bone. It appears that CelGroTM showed better cortical alignment and reduced porosity at the defect interface compared to Bio-Gide®. Owning the fact that selection of orthopedic patients with cortical bone defects is complex, we conducted the proof of concept clinical study in a total of 16 dental implants which were placed in 10 participants receiving GBR. The results showed that there were with no complications or adverse events observed. CBCT evidenced efficiency of the CelGroTM scaffold for GBR for the dental implants, showing significantly decreased 2 distance from the implant shoulder to first bone/implant contact (DIB) and increased horizontal thickness of facial bone wall (HT). Conclusion: The findings of our study demonstrate that CelGroTM is an ideal membrane for GBR not only in oral maxillofacial reconstructive surgery but also in orthopedic applications. Details of clinical trial registration: “Single centre, open-label, pilot study of Celgro(tm) collagen membrane for guided bone regeneration around exposed implants in patients undergoing dental implant surgery”; Registration ID: ACTRN12615000027516; Date of registration: 19/01/2015; URL: https://anzctr.org.au/ACTRN12615000027516.aspx


2021 ◽  
Vol 11 (3) ◽  
pp. 891
Author(s):  
Taylor Flaherty ◽  
Maryam Tamaddon ◽  
Chaozong Liu

Osteochondral scaffold technology has emerged as a promising therapy for repairing osteochondral defects. Recent research suggests that seeding osteochondral scaffolds with bone marrow concentrate (BMC) may enhance tissue regeneration. To examine this hypothesis, this study examined subchondral bone regeneration in scaffolds with and without BMC. Ovine stifle condyle models were used for the in vivo study. Two scaffold systems (8 mm diameter and 10 mm thick) with and without BMC were implanted into the femoral condyle, and the tissues were retrieved after six months. The retrieved femoral condyles (with scaffold in) were examined using micro-computed tomography scans (micro-CT), and the micro-CT data were further analysed by ImageJ with respect to trabecular thickness, bone volume to total volume ratio (BV/TV) ratio, and degree of anisotropy of bone. Statistical analysis compared bone regeneration between scaffold groups and sub-set regions. These results were mostly insignificant (p < 0.05), with the exception of bone volume to total volume ratio when comparing scaffold composition and sub-set region. Additional trends in the data were observed. These results suggest that the scaffold composition and addition of BMC did not significantly affect bone regeneration in osteochondral defects after six months. However, this research provides data which may guide the development of future treatments.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yong Yang ◽  
Huiting Hu ◽  
Mianyan Zeng ◽  
Hongxing Chu ◽  
Zekun Gan ◽  
...  

Abstract Background Few large-sample studies in China have focused on the early survival of dental implants. The present study aimed to report the early survival rates of implants and determine the related influencing factors. Methods All patients receiving dental implants at our institution between 2006 and 2017 were included. The endpoint of the study was early survival rates of implants, according to gender, age, maxilla/mandible, dental position, bone augmentation, bone augmentation category, immediate implant, submerged implant category, implant diameter, implant length, implant torque, and other related factors. Initially, SPSS22.0 was used for statistical analysis. The Chi-square test was used to screen all factors, and those with p < 0.05 were further introduced into a multiple logistic regression model to illustrate the risk factors for early survival rates of implants. Results In this study, we included 1078 cases (601 males and 477 females) with 2053 implants. After implantation, 1974 implants were retained, and the early survival rate was 96.15%. Patients aged 30–60 years (OR  2.392), with Class I bone quality (OR  3.689), bone augmentation (OR  1.742), immediate implantation (OR  3.509), and implant length < 10 mm (OR  2.972), were said to possess risk factors conducive to early survival rates. Conclusions The early survival rate of implants in our cohort exceeded 96%, with risk factors including age, tooth position, bone quality, implant length, bone augmentation surgery, and immediate implantation. When the above factors coexist, implant placement should be treated carefully.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Philipp S. Lienemann ◽  
Stéphanie Metzger ◽  
Anna-Sofia Kiveliö ◽  
Alain Blanc ◽  
Panagiota Papageorgiou ◽  
...  

Abstract Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (<1 mm). Herein, we employ modular designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials.


2019 ◽  
Vol 90 (6) ◽  
pp. 595-607 ◽  
Author(s):  
Daniel J. Phillips ◽  
Dane T. Swenson ◽  
Thomas M. Johnson

Sign in / Sign up

Export Citation Format

Share Document