scholarly journals One-pot hydrothermal synthesis and characterization of magnetic nanocomposite of titania-deposited copper ferrite/ferrite oxide for photocatalytic decomposition of methylene blue dye

2019 ◽  
Vol 9 (4) ◽  
pp. 327-338 ◽  
Author(s):  
Zahra Nasrollahi ◽  
Azadeh Ebrahimian Pirbazari ◽  
Atefeh Hasan-Zadeh ◽  
Ali Salehi

Abstract The pure titania (TiO2) and the heterogeneous ternary magnetic nanocomposite of copper ferrite/ferrite oxide (CuFe2O4/Fe2O3) deposited by titanium dioxide (TiO2) were fabricated using a facile one-pot hydrothermal synthesis for the photocatalytic decomposition of methylene blue (MB) dye, under visible light. The nanocomposite was encoded as TCF in this work, where T stands for TiO2, C for CuFe2O4 and F for Fe2O3. Various techniques such as powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy, diffuse reflectance spectroscopy, nitrogen physisorption, and vibrational sample magnetometry (VSM) were used to characterize the prepared samples. The PXRD data showed that the samples had pure anatase structure and the average crystal size of anatase TiO2 in the pure titania and ternary nanocomposite were calculated 147 Å and 135 Å, respectively. The nitrogen physisorption analysis data showed that the pore diameter was increased from 10.6 nm in pure titania to 16.0 nm in TCF. The pore volume was also increased from 0.316 in titania to 0.383 cm3/g in TCF sample. It also increased the typical magnitude of the mesopores’ diameter and volume per weight but it reduced the specific surface area of the samples. The VSM analysis of the ternary nanocomposite showed a considerable magnetic property of the sample (1.99 emu/g), qualifying it as a paramagnetic material. The photocatalytic decomposition efficiency of MB reached 77% and 68% in the presence of pure titania and TCF ternary nanocomposite, after 240-min exposure by the visible light. Active species trapping experiments showed that the major active species responsible for the photodecomposition of MB in the presence of TCF are $${\text{O}}_{2}^{ \cdot - }$$O2·- radicals and holes (h+).

2013 ◽  
Vol 734-737 ◽  
pp. 2163-2167
Author(s):  
Guang Xiu Cao ◽  
Zhong Hou Zhang ◽  
Bin Zhai

Lanthanum doped TiO2 powders were prepared by hydrolysis of titanium tetra-n-butyl oxide and La (NO3)3 in solution. The resulting powders were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis absorption spectroscopy. The photocatalytic activities of doped samples were evaluated by the decomposition of methylene blue under visible light irradiation. The XRD results showed that the doping of lanthanum could not only efficiently inhibit the grain growth but also suppress the phase transition of anatase to rutile. UV-Vis spectroscopy of lanthanum doping TiO2 indicated that the absorption onset red-shifted to the visible light region. XPS results revealed that La2O3 had formed which could enhance the surface area. The degradation rates of methylene blue verified that the visible light photocatalytic activity of TiO2 has been enhanced by the doping of lanthanum.


2018 ◽  
Vol 2017 (1) ◽  
pp. 184-193 ◽  
Author(s):  
Desireé M. de los Santos ◽  
Sara Chahid ◽  
Rodrigo Alcántara ◽  
Javier Navas ◽  
Teresa Aguilar ◽  
...  

Abstract Photodegradation processes are of great interest in a range of applications, one of which is the photodecomposition of pollutants. For this reason, analysing nanoparticles that improve the efficiency of these processes under solar radiation are very necessary. Thus, in this study, TiO2 was doped with Mo and Cu using low-temperature hydrolysis as the method of synthesis. Pure TiO2 and x%MoS2/Cu/TiO2 nanoparticles were prepared, where x is the theoretical quantity of MoS2 added (0.0%, 1.0%, 5.5%, 10.0%), setting the nominal quantity of Cu at 0.5 wt.%. The samples obtained were characterized by X-ray diffraction, Raman spectroscopy, X-ray electron spectroscopy and UV-Vis spectroscopy in diffuse reflectance mode. The results suggest that the TiO2 structure was doped with the Mo6+ and Cu2+ ions in the position of the Ti4+. The x%MoS2/Cu/TiO2 samples presented lower band gap energy values and greater optical absorption in the visible region than the pure TiO2 sample. Lastly, the photocatalytic activity of the samples was assessed by means of the photodegradation of methylene blue under visible light. The results show that when the quantity of Mo in the co-doped samples increased (x%MoS2/Cu/TiO2) there were significant increases of up to 93% in the photocatalytic activity.


Author(s):  
Md. Noor Arifin ◽  
Kaykobad Md. Rezaul Karim ◽  
Hamidah Abdullah ◽  
Maksudur R Khan

This paper reports the photocatalytic decomposition of methylene blue (MB) over titania doped copper ferrite, CuFe2O4/TiO2 with 50 wt% loading, synthesized via sol-gel method. The synthesized photocatalyst was characterized by X-ray diffraction, UV-vis diffuse reflectance, and photoluminescence, Mott-Schottky (MS) analysis and linear sweep voltammetry (LSV). The catalyst loadings were varied from 0.25 – 1.0 g/L and the optimum catalyst loading found to be 0.5 g/L. At the optimum loading, the conversion achieved was 83.7%. The other loadings produced slightly lower conversions at 82.7%, 80.6% and 80.0%, corresponding to 0.25, 1 and 0.75 g/L after 3 hours of irradiation. The study on the effect of initial concentration indicated that 20 ppm as the optimum concentration, tested with 0.5 g/L catalyst loading. The spent catalyst was used for the recyclability test and demonstrated a high longevity with a degradation efficiency less than 6 % for each time interval. The novelty of this study lies on the new application of photocatalytic material, CuFe2O4/TiO2 on thiazine dye that shows remarkable activity and reusability performance under visible light irradiation. Copyright © 2019 BCREC Group. All rights reservedReceived: 15th November 2018; Revised: 14th January 2019; Accepted: 17th January 2019; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Arifin, M.N., Karim, K.M.R., Abdullah, H., Khan, M.R. (2019). Synthesis of Titania Doped Copper Ferrite Photocatalyst and Its Photoactivity towards Methylene Blue Degradation under Visible Light Irradiation. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 219-227 (doi:10.9767/bcrec.14.1.3616.219-227) Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.3616.219-227 


2018 ◽  
Vol 9 ◽  
pp. 580-590 ◽  
Author(s):  
Anna Gołąbiewska ◽  
Marta Paszkiewicz-Gawron ◽  
Aleksandra Sadzińska ◽  
Wojciech Lisowski ◽  
Ewelina Grabowska ◽  
...  

To investigate the effect of the ionic liquid (IL) chain length on the surface properties and photoactivity of TiO2, a series of TiO2 microspheres have been synthesized via a solvothermal method assisted by 1-methyl-3-octadecylimidazolium chloride ([ODMIM][Cl]) and 1-methyl-3-tetradecylimidazolium chloride ([TDMIM][Cl]). All as-prepared samples were characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), scanning transmission microscopy (STEM) and the Brunauer–Emmett–Teller (BET) surface area method, whereas the photocatalytic activity was evaluated by the degradation of phenol in aqueous solution under visible light irradiation (λ > 420 nm). The highest photoefficiency (four times higher than pristine TiO2) was observed for the TiO2 sample obtained in the presence of [TDMIM][Cl] for a IL to TiO2 precursor molar ratio of 1:3. It was revealed that interactions between the ions of the ionic liquid and the surface of the growing titanium dioxide spheres results in a red-shift of absorption edge for the IL–TiO2 semiconductors. In this regard, the direct increase of the photoactivity of IL–TiO2 in comparison to pristine TiO2 was observed. The active species trapping experiments indicated that O2 •− is the main active species, created at the surface of the IL–TiO2 material under visible-light illumination, and is responsible for the effective phenol degradation.


RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 6383-6394 ◽  
Author(s):  
Haishuai Li ◽  
Linlin Cai ◽  
Xin Wang ◽  
Huixian Shi

A noval ternary nanocomposite AgCl/Ag3PO4/g-C3N4 was successfully synthesized for photocatalytic degradation of methylene blue, methylparaben and inactivation of E. coli under visible light irradiation, showing excellent photocatalytic degradation performance and stability.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 661
Author(s):  
Zhiwei Ying ◽  
Xinwei Chen ◽  
He Li ◽  
Xinqi Liu ◽  
Chi Zhang ◽  
...  

Soybean dreg is a by-product of soybean products production, with a large consumption in China. Low utilization value leads to random discarding, which is one of the important sources of urban pollution. In this work, porous biochar was synthesized using a one-pot method and potassium bicarbonate (KHCO3) with low-cost soybean dreg (SD) powder as the carbon precursor to investigating the adsorption of methylene blue (MB). The prepared samples were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analyzer (EA), Brunauer-Emmett-Teller (BET), X-ray diffractometer (XRD), Raman spectroscopy (Raman), Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The obtained SDB-K-3 showed a high specific surface area of 1620 m2 g−1, a large pore volume of 0.7509 cm3 g−1, and an average pore diameter of 1.859 nm. The results indicated that the maximum adsorption capacity of SDB-K-3 to MB could reach 1273.51 mg g−1 at 318 K. The kinetic data were most consistent with the pseudo-second-order model and the adsorption behavior was more suitable for the Langmuir isotherm equation. This study demonstrated that the porous biochar adsorbent can be prepared from soybean dreg by high value utilization, and it could hold significant potential for dye wastewater treatment in the future.


2011 ◽  
Vol 335-336 ◽  
pp. 1385-1390 ◽  
Author(s):  
Shuo Wiei Zhao ◽  
Hui Xu ◽  
Hua Ming Li ◽  
Yuan Guo Xu

In order to improve the photocatalytic activity, Co was successfully loaded into Ag3VO4 by using impregnation process. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectroscopy (DRS). The XRD and SEM–EDS analyses revealed that Co ion was dispersed on Ag3VO4. The DRS results indicated that the absorption edge of the Co–Ag3VO4 catalyst shifted to longer wavelength. The enhanced photocatalytic activity of Co–Ag3VO4 for Methylene Blue(MB) dye degradation under visible light irradiation was due to its wider absorption edge and higher separation rate of photo-generated electron and holes. In the experimental conditions, it is demonstrated that the MB was effectively degraded by more than 95% within 40 min when the Co–Ag3VO4 catalyst was calcined at 300°C with 1 wt.% Co content.


2014 ◽  
Vol 608 ◽  
pp. 224-229 ◽  
Author(s):  
Potjanaporn Chaengchawi ◽  
Karn Serivalsatit ◽  
Pornapa Sujaridworakun

A visible-light responsive CdS/ZnO nanocomposite photocatalyst was successfully synthesized by precipitation of CdS nanoparticles, using Cd (NO3)2 and Na2S as starting materials, on ZnO nanoparticles and then calcined at 400°C for 2 hours. The effects of the mole ratio of CdS and ZnO in the composites on their phase, morphology, and surface area were investigated by X-ray Diffraction (XRD), scanning electron microscope (SEM), Brunauer Emmett Teller method (BET), respectively. The photocatalytic degradation of methylene blue solution in the presence of composite products under visible-light irradiation was investigated. The results showed that the mole ratio of CdS and ZnO played a significant role on photocatalytic performance. The highest photocatalytic activity was obtained from the CdS/ZnO nanocomposite with mole ratio of 1:4, which is higher than that of pure CdS and pure ZnO.


Sign in / Sign up

Export Citation Format

Share Document