scholarly journals Electrical behavior of graphene under temperature effect and survey of I–T curve

2019 ◽  
Vol 13 (4) ◽  
pp. 351-356
Author(s):  
M. Haditale ◽  
R. S. Dariani ◽  
E. Ghasemian Lemraski

Abstract Graphene flakes were made from electrochemical exfoliation. To study graphene planes, different volumes of graphene solutions (1, 2, 4, and 7 ml) were sprayed on glass lamellae to get different graphene planes. I–V curve of all samples shows ohmic behavior with resistance in the order of kΩ which increases the slope of the I–V curve with increasing graphene planes (spray volume). The effect of temperature on all samples shows a clear jump in I–T curves. It is found that up to 150 °C current is almost constant, but after that current increases highly in the range of 1.8–10 times and resistance reduces sharply. Also, samples with lower graphene planes affected highly with temperature effect.

2003 ◽  
Vol 68 (8) ◽  
pp. 1407-1419 ◽  
Author(s):  
Claudio Fontanesi ◽  
Roberto Andreoli ◽  
Luca Benedetti ◽  
Roberto Giovanardi ◽  
Paolo Ferrarini

The kinetics of the liquid-like → solid-like 2D phase transition of adenine adsorbed at the Hg/aqueous solution interface is studied. Attention is focused on the effect of temperature on the rate of phase change; an increase in temperature is found to cause a decrease of transition rate.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 423
Author(s):  
Thorsten Michler ◽  
Frank Schweizer ◽  
Ken Wackermann

It is well-documented experimentally that the influence of hydrogen on the mechanical properties of structural alloys like austenitic stainless steels, nickel superalloys, and carbon steels strongly depends on temperature. A typical curve plotting any hydrogen-affected mechanical property as a function of temperature gives a temperature THE,max, where the degradation of this mechanical property reaches a maximum. Above and below this temperature, the degradation is less. Unfortunately, the underlying physico-mechanical mechanisms are not currently understood to the level of detail required to explain such temperature effects. Though this temperature effect is important to understand in the context of engineering applications, studies to explain or even predict the effect of temperature upon the mechanical properties of structural alloys could not be identified. The available experimental data are scattered significantly, and clear trends as a function of chemistry or microstructure are difficult to see. Reported values for THE,max are in the range of about 200–340 K, which covers the typical temperature range for the design of structural components of about 230–310 K (from −40 to +40 °C). That is, the value of THE,max itself, as well as the slope of the gradient, might affect the materials selection for a dedicated application. Given the current lack of scientific understanding, a statistical approach appears to be a suitable way to account for the temperature effect in engineering applications. This study reviews the effect of temperature upon hydrogen effects in structural alloys and proposes recommendations for test temperatures for gaseous hydrogen applications.


RSC Advances ◽  
2020 ◽  
Vol 10 (30) ◽  
pp. 17473-17478
Author(s):  
Go Fuseya ◽  
Satoshi Takeya ◽  
Akihiro Hachikubo

Temperature effect on C–H symmetric stretching frequencies of CH4 in water cages of sI and sH clathrate hydrates were clarified.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2801 ◽  
Author(s):  
Ayman El-Zohairy ◽  
Hunter Hammontree ◽  
Eddie Oh ◽  
Perry Moler

Concrete is one of the most common and versatile construction materials and has been used under a wide range of environmental conditions. Temperature is one of them, which significantly affects the performance of concrete, and therefore, a careful evaluation of the effect of temperature on concrete cannot be overemphasized. In this study, an overview of the temperature effect on the compressive behavior of plain hardened concrete is experimentally provided. Concrete cylinders were prepared, cured, and stored under different temperature conditions to be tested under compression. The stress–strain curve, mode of failure, compressive strength, ultimate strain, and modulus of elasticity of concrete were evaluated between the ages of 7 and 90 days. The experimental results were used to propose constitutive models to predict the mechanical properties of concrete under the effect of temperature. Moreover, previous constitutive models were examined to capture the stress–strain relationships of concrete under the effect of temperature. Based on the experimental data and the proposed models, concrete lost 10–20% of its original compressive strength when heated to 100 °C and 30–40% at 260 °C. The previous constitutive models for stress–strain relationships of concrete at normal temperatures can be used to capture these relationships under the effect of temperature by using the compressive strength, ultimate strain, and modulus of elasticity affected by temperature. The effect of temperature on the modulus of elasticity of concrete was considered in the ACI 318-14 equation by using the compressive strength affected by temperature and the results showed good agreement with the experimental data.


2013 ◽  
Vol 706-708 ◽  
pp. 1545-1548
Author(s):  
Yong Chun Cheng ◽  
Yu Ping Shi ◽  
Guo Jin Tan

Natural frequencies are of great value to bridge structural design, health monitoring and detection. Related research data show that the ambient temperature can affect the natural frequencies of the continuous box-girder bridges. In order to research the effect of temperature on the bridge structure and conclude the influence law, theoretical analysis of temperature effect on the natural frequencies of the continuous box girder bridges is conducted based on the stochastic subspace identification. First, the finite element model of the bridge is built to conduct thermal-structural coupling analysis. Then regard the analysis results as the original state, and exert white noise excitation on the structure to obtain the dynamic response of the structure. And then analyze the dynamic response based on the stochastic subspace identification and calculate the natural frequencies of the bridges under the temperature effect. At last, based on the practical project of one 3-span continuous box-girder bridge, the validity and the reliability of this method is verified.


2018 ◽  
Vol 39 (3) ◽  
pp. 572-587 ◽  
Author(s):  
William Soo Lon Wah ◽  
Yung-Tsang Chen

Most damage detection methods developed in the literature cannot give the locations and extent of damages under the presence of varying temperature condition. This is because temperature condition changes the vibration properties of a structure, which are commonly analyzed for damage detection, and temperature gradient throughout the structure makes it difficult to create a baseline for the undamaged structure, as the baseline is generally constructed using features obtained under a wide range of temperature conditions. In this paper, a new insight on how to approach damage detection using only a single temperature condition to create the baseline is proposed. This approach solves the damage detection under changing temperature problem in two stages by first quantifying the change of stiffness of all the elements in a structure due to temperature and damage effects, followed by removing the temperature effect, a global effect, to give the actual damage locations and extent. Using single temperature condition allows new measurements to be compared to a benchmark so that local deviation can be obtained, thus making the damaged elements identifiable. The proposed approach is tested using a beam structure model and a shear building under different gradient temperature conditions, and the results demonstrate that the method successfully eliminates the change in elemental stiffness due to temperature effect and gives correct damage locations and extent. The approach can be implemented with other existing damage detection methods that did not consider the effect of temperature so that structures under varying temperature condition can be analyzed.


Sign in / Sign up

Export Citation Format

Share Document