scholarly journals Enhanced giant dielectric properties and improved nonlinear electrical response in acceptor-donor (Al3+, Ta5+)-substituted CaCu3Ti4O12 ceramics

Author(s):  
Jakkree Boonlakhorn ◽  
Narong Chanlek ◽  
Jedsada Manyam ◽  
Pornjuk Srepusharawoot ◽  
Sriprajak Krongsuk ◽  
...  

AbstractThe giant dielectric behavior of CaCu3Ti4O12 (CCTO) has been widely investigated owing to its potential applications in electronics; however, the loss tangent (tanδ) of this material is too large for many applications. A partial substitution of CCTO ceramics with either Al3+ or Ta5+ ions generally results in poorer nonlinear properties and an associated increase in tanδ (to ∼0.29–1.15). However, first-principles calculations showed that self-charge compensation occurs between these two dopant ions when co-doped into Ti4+ sites, which can improve the electrical properties of the grain boundary (GB). Surprisingly, in this study, a greatly enhanced breakdown electric field (∼200–6588 V/cm) and nonlinear coefficient (∼4.8–15.2) with a significantly reduced tanδ (∼0.010–0.036) were obtained by simultaneous partial substitution of CCTO with acceptor-donor (Al3+, Ta5+) dopants to produce (Al3+, Ta5+)-CCTO ceramics. The reduced tanδ and improved nonlinear properties were attributed to the synergistic effects of the co-dopants in the doped CCTO structure. The significant reduction in the mean grain size of the (Al3+, Ta5+)-CCTO ceramics compared to pure CCTO was mainly because of the Ta5+ ions. Accordingly, the increased GB density due to the reduced grain size and the larger Schottky barrier height (Φb) at the GBs of the co-doped CCTO ceramics were the main reasons for the greatly increased GB resistance, improved nonlinear properties, and reduced tanδ values compared to pure and single-doped CCTO. In addition, high dielectric constant values (ε′ ≈ (0.52–2.7) × 104) were obtained. A fine-grained microstructure with highly insulating GBs was obtained by Ta5+ doping, while co-doping with Ta5+ and Al3+ resulted in a high Φb. The obtained results are expected to provide useful guidelines for developing new giant dielectric ceramics with excellent dielectric properties.

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7041
Author(s):  
Noppakorn Thanamoon ◽  
Narong Chanlek ◽  
Pornjuk Srepusharawoot ◽  
Ekaphan Swatsitang ◽  
Prasit Thongbai

Giant dielectric (GD) oxides exhibiting extremely large dielectric permittivities (ε’ > 104) have been extensively studied because of their potential for use in passive electronic devices. However, the unacceptable loss tangents (tanδ) and temperature instability with respect to ε’ continue to be a significant hindrance to their development. In this study, a novel GD oxide, exhibiting an extremely large ε’ value of approximately 7.55 × 104 and an extremely low tanδ value of approximately 0.007 at 103 Hz, has been reported. These remarkable properties were attributed to the synthesis of a Lu3+/Nb5+ co-doped TiO2 (LuNTO) ceramic containing an appropriate co-dopant concentration. Furthermore, the variation in the ε’ values between the temperatures of −60 °C and 210 °C did not exceed ±15% of the reference value obtained at 25 °C. The effects of the grains, grain boundaries, and second phase particles on the dielectric properties were evaluated to determine the dielectric properties exhibited by LuNTO ceramics. A highly dense microstructure was obtained in the as-sintered ceramics. The existence of a LuNbTiO6 microwave-dielectric phase was confirmed when the co-dopant concentration was increased to 1%, thereby affecting the dielectric behavior of the LuNTO ceramics. The excellent dielectric properties exhibited by the LuNTO ceramics were attributed to their inhomogeneous microstructure. The microstructure was composed of semiconducting grains, consisting of Ti3+ ions formed by Nb5+ dopant ions, alongside ultra-high-resistance grain boundaries. The effects of the semiconducting grains, insulating grain boundaries (GBs), and secondary microwave phase particles on the dielectric relaxations are explained based on their interfacial polarizations. The results suggest that a significant enhancement of the GB properties is the key toward improvement of the GD properties, while the presence of second phase particles may not always be effective.


2007 ◽  
Vol 336-338 ◽  
pp. 316-319 ◽  
Author(s):  
Jun Zhao ◽  
Shu Ping Gong ◽  
G. Xiong ◽  
X.H. Yu

The sintering dynamics, microstructures and microwave dielectric properties of Bi2O3 and MnO2 co-doped [(Pb,Ca) La](Fe,Nb)O3 (PCLFN) ceramics were investigated. Bi2O3 and MnO2 dopants effectively enhanced bulk densities and reduced sintering temperatures by about 100~140°C. Sintering procedure had significant effect on grain size and porosities of ceramics. Investigation of microstructures revealed that the grain growth was controlled by either volume diffusion or second-order interface mechanism in present ceramics. The potential microwave dielectric properties of εr=91.1,Qf=4870GHz and τf=18.5ppm/°C could be obtained when the mass ratio of Bi2O3/MnO2 (k) was 1, the doping content w=1wt% and sintered at 1050°C for 4h.


2017 ◽  
Vol 703 ◽  
pp. 139-147 ◽  
Author(s):  
Wattana Tuichai ◽  
Supamas Danwittayakul ◽  
Narong Chanlek ◽  
Prasit Thongbai ◽  
Santi Maensiri

2019 ◽  
Vol 116 ◽  
pp. 137-142 ◽  
Author(s):  
Wattana Tuichai ◽  
Supamas Danwittayakul ◽  
Narong Chanlek ◽  
Prasit Thongbai

2011 ◽  
Vol 214 ◽  
pp. 173-177
Author(s):  
Tian Guo Wang ◽  
Qun Qin ◽  
Wen Jun Zhang

The microstructure and nonlinear electrical behavior and dielectric properties of the varistor, which are composed of (Y2O3, Ta2O5)-doped TiO2 ceramics, were investigated for various sintering temperatures. It is assumed that the moderate sintering temperature improves the permitivity of TiO2 ceramics, together with high nonlinear properties. The varistor of 99.6 mol%-0.3 mol%Y2O3-0.1 nol%Ta2O5 composite sintered at 1400 °C has a maximal nonlinear coefficient of α =4.4, a low breakdown voltage of 10.8 V/mm, the ultrahigh electrical permittivity of 7.73× 104 and low tanδ of 0.34. The sintering temperature plays an important an important role on the nonlinear electrical characteristics and dielectric properties of the ceramics through its influences on the microstructure of samples.


ACS Omega ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 1901-1910
Author(s):  
Wattana Tuichai ◽  
Supamas Danwittayakul ◽  
Narong Chanlek ◽  
Masaki Takesada ◽  
Atip Pengpad ◽  
...  

2011 ◽  
Vol 687 ◽  
pp. 375-379 ◽  
Author(s):  
Hong Tao Yu ◽  
Wen Bo Zhang ◽  
Jing Song Liu ◽  
Han Xing Liu

The dielectric properties of Zr substituted CaCu3Ti4O12ceramics have been investigated in detail. Grain size decreases with Zr content increasing. The hetero-electrical microstructures of prepared samples have been confirmed by the impedance spectra. The dielectric loss has been improved by Zr doping because of the enhancement of grain boundary resistivity. A Debye-like boundary relaxation behavior has been observed in the temperature range of 220-600K. As Zr content increases, the relaxation time increases due to the higher grain boundary concentration. This work has provided an additional proof for the origin of giant dielectric response in CaCu3Ti4O12ceramics.


2015 ◽  
Vol 815 ◽  
pp. 125-128
Author(s):  
Gang Chen ◽  
Chun Wei Gong ◽  
Chun Lin Fu ◽  
Xiao Dong Peng ◽  
Wei Cai ◽  
...  

(Sr1-xBax) 2(Nb0.9Ta0.1) 2O7 (SBNT) ceramics were prepared by solid state reaction. The crystal structure of SBNT ceramics, surface morphology and dielectric properties were studied using XRD, SEM and LCR instrument analyzer, respectively. The results show that the grain size decreases with increasing Ba concentration, and all samples show single phase, no second phase can been observed. Addition of Ba ion can improve the dielectric properties of SBN ceramics. The dielectric constant increases first, then decreases; the maximum value (εr=97) can be obtained at x=0.1, the dielectric constant changes slightly with increasing wide frequency.


Author(s):  
Jakkree Boonlakhorn ◽  
Jirata Prachamon ◽  
Jedsada Manyam ◽  
Prasit Thongbai ◽  
Pornjuk Srepusharawoot

Sign in / Sign up

Export Citation Format

Share Document