scholarly journals Numerical analysis of DDFV schemes for semiconductors energy-transport models

2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Marianne Bessemoulin-Chatard ◽  
Giulia Lissoni ◽  
Hélène Mathis
Author(s):  
Marianne Bessemoulin-Chatard ◽  
Claire Chainais-Hillairet ◽  
Hélène Mathis

2020 ◽  
Vol 86 (3) ◽  
Author(s):  
S. Toda ◽  
M. Nunami ◽  
H. Sugama

Using transport models, the impacts of trapped electrons on zonal flows and turbulence in helical field configurations are studied. The effect of the trapped electrons on the characteristic quantities of the linear response for zonal flows is investigated for two different field configurations in the Large Helical Device. The turbulent potential fluctuation, zonal flow potential fluctuation and ion energy transport are quickly predicted by the reduced models for which the linear and nonlinear simulation results are used to determine dimensionless parameters related to turbulent saturation levels and typical zonal flow wavenumbers. The effects of zonal flows on the turbulent transport for the case of the kinetic electron response are much smaller than or comparable to those in an adiabatic electron condition for the two different field configurations. It is clarified that the effect of zonal flows on the turbulent transport due to the trapped electrons changes, depending on the field configurations.


VLSI Design ◽  
1995 ◽  
Vol 3 (2) ◽  
pp. 211-224 ◽  
Author(s):  
Edwin C. Kan ◽  
Zhiping Yu ◽  
Robert W. Dutton ◽  
Datong Chen ◽  
Umberto Ravaioli

According to different assumptions in deriving carrier and energy flux equations, macroscopic semiconductor transport models from the moments of the Boltzmann transport equation (BTE) can be divided into two main categories: the hydrodynamic (HD) model which basically follows Bløtekjer's approach [1, 2], and the Energy Transport (ET) model which originates from Strattton's approximation [3, 4]. The formulation, discretization, parametrization and numerical properties of the HD and ET models are carefully examined and compared. The well-known spurious velocity spike of the HD model in simple nin structures can then be understood from its formulation and parametrization of the thermoelectric current components. Recent progress in treating negative differential resistances with the ET model and extending the model to thermoelectric simulation is summarized. Finally, we propose a new model denoted by DUET (Dual ET)which accounts for all thermoelectric effects in most modern devices and demonstrates very good numerical properties. The new advances in applicability and computational efficiency of the ET model, as well as its easy implementation by modifying the conventional drift-diffusion (DD) model, indicate its attractiveness for numerical simulation of advanced semiconductor devices


2021 ◽  
Author(s):  
Kieu Hiep Le

To preserve the product quality as well as to reduce the logistics and storage cost, drying process is widely applied in the processing of porous material. In consideration of transport phenomena that involve a porous medium during drying, the complex morphology of the medium, and its influences on the distribution, flow, displacement of multiphase fluids are encountered. In this chapter, the recent advanced mass and energy transport models of drying processes are summarized. These models which were developed based on both pore- and continuum-scales, may provide a better fundamental understanding of non-isothermal liquid–vapor transport at both the continuum scale and the pore scale, and to pave the way for designing, operating, and optimizing drying and relevant industrial processes.


Author(s):  
A. Hernández-Cervantes ◽  
R. Quezada

We prove that every stationary state in the annihilator of all Kraus operators of a weak coupling limit-type Markov generator consists of two pieces, one of them supported on the interaction-free subspace and the second one on its orthogonal complement. In particular, we apply the previous result to describe in detail the structure of a slightly modified quantum transport model due to Arefeva et al. (modified AKV’s model) studied first in [J. C. García et al., Entangled and dark stationary states of excitation energy transport models in many-particles systems and photosynthesis, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 21(3) (2018), Article ID: 1850018, p. 21, doi:10.1142/S0219025718500182], in terms of generalized annihilation and creation operators.


VLSI Design ◽  
1998 ◽  
Vol 8 (1-4) ◽  
pp. 375-379
Author(s):  
A. Marrocco ◽  
Ph. Montarnal

We study the application of the mixed finite elements method (MFE) for the bidimensional simulation of the simplified hydrodynamic and energy-transport models. The two main points are the use of entropic variables which gives a symmetric positive definite problem and a coupled computation of the equations for electrons which requires a generalization of the MFE method for vector valued problems. We give numerical results on JFET and HEMT devices.


Sign in / Sign up

Export Citation Format

Share Document