Design and kinematic analysis of a new 3-DOF spherical parallel manipulator for a prosthetic wrist

Author(s):  
José-Alfredo Leal-Naranjo ◽  
Mingfeng Wang ◽  
Juan-Carlos Paredes-Rojas ◽  
Horacio Rostro-Gonzalez
Robotica ◽  
1997 ◽  
Vol 15 (4) ◽  
pp. 399-405 ◽  
Author(s):  
Sylvie Leguay-Durand ◽  
Claude Reboulet

A new kinematic design of a parallel spherical wrist with actuator redundancy is presented. A special feature of this parallel manipulator is the arrangement of co-axial actuators which allows unlimited rotation about any axis inside a cone-shaped workspace. A detailed kinematic analysis has shown that actuator redundancy not only removes singularities but also increases workspace while improving dexterity. The structure optimization has been performed with a global dexterity criterion. Using a conditioning measure, a comparison with a non-redundant structure of the same type was performed and shows that a significant improvement in dexterity has been obtained.


2004 ◽  
Vol 126 (5) ◽  
pp. 850-855 ◽  
Author(s):  
Raffaele Di Gregorio

Orientating a rigid body without changing its position is required in many technical applications. This manipulation task is accomplished by manipulators (spherical manipulators) that are just able to make the end effector move according to controlled spherical motions. Spherical manipulators can be either serial or parallel. Parallel architectures are usually more stiff and precise than the serial ones, whereas their structures are more complex than the serial ones. This paper presents a new three-equal-legged spherical parallel manipulator, named the 3-RRS wrist. The 3-RRS wrist is not overconstrained and exhibits a simple architecture employing just three passive revolute pairs, three passive spherical pairs and three actuated revolute pairs adjacent to the frame. The kinematic analysis of the 3-RRS wrist is addressed and fully solved. Finally, its singularity conditions are written in explicit form and discussed. The results of this analysis lead to the conclusion that the new manipulator has only two types of singularities both easy to be identified with geometric reasoning.


Author(s):  
Soheil Zarkandi

This paper introduces a novel three degree-of-freedom spherical parallel manipulator with 3-PRR topology, where P and R denote a curved prismatic joint and a revolute joint, respectively. The first revolute joint of each PRR leg is actuated via a double Rzeppa-type driveshaft, and hence underlined. The manipulator has at most eight working modes and eight assembly modes. However, only one working mode and one assembly mode of the manipulator are acceptable during its motion which can be easily identified. Singularity and kinematic dexterity analyses reveal that the proposed 3-PRR spherical parallel manipulator has no forward kinematic singularity for a wide range of rotation of the moving platform around its central axis. An optimal design of the manipulator is also presented having a workspace with good kinematic dexterity.


2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Jérôme Landuré ◽  
Clément Gosselin

This paper introduces a new architecture of spherical parallel robot which significantly extends the workspace when compared to existing architectures. To this end, the singularity locus is studied and the design parameters are chosen so as to confine the singularities to areas already limited by other constraints such as mechanical interferences. First, the architecture of the spherical redundant robot is presented and the Jacobian matrices are derived. Afterwards, the analysis of the singularities is addressed from a geometric point of view, which yields a description of the singularity locus expressed as a function of the architectural parameters. Then, the results are applied to an example set of architectural parameters, which are chosen in order to illustrate the advantages of the redundant architecture over current designs in terms of workspace.


Author(s):  
Genliang Chen ◽  
Weidong Yu ◽  
Hao Wang ◽  
Jiepeng Wang

This paper presents the design of a novel spherical parallel manipulator. The spherical parallel manipulator consists of three identical limbs and each of them is formed by a planar parallelogram linkage, a universal joint, and a revolute one, successively. Its mobility is analyzed using the reciprocal screws. After that, the kinematics is analyzed in detail, including inverse kinematic modeling, which is validated by a numerical example, inverse Jacobian analysis, singularity analysis, and manipulability analysis, which shows a relatively good performance of force transmission. Then based on the analysis, one prototype is fabricated to validate the effectiveness and feasibility of the design. In the end, some conclusions are drawn and future works are discussed.


Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Soheil Zarkandi

Abstract A comprehensive dynamic modeling and actuator torque minimization of a new symmetrical three-degree-of-freedom (3-DOF) 3-PṞR spherical parallel manipulator (SPM) is presented. Three actuating systems, each of which composed of an electromotor, a gearbox and a double Rzeppa-type driveshaft, produce input torques of the manipulator. Kinematics of the 3-PṞR SPM was recently studied by the author (Zarkandi, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, https://doi.org/10.1177%2F0954406220938806). In this paper, a closed-form dynamic equation of the manipulator is derived with the Newton–Euler approach. Then, an optimization problem with kinematic and dynamic constraints is presented to minimize torques of the actuators for implementing a given task. The results are also verified by the SimMechanics model of the manipulator.


Sign in / Sign up

Export Citation Format

Share Document