scholarly journals On the Effect of a Rail Pressure Error State Observer in Reducing Fuel Injection Cycle-to-Cycle Variation in an Opposed-Piston Compression Ignition Engine

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1729
Author(s):  
Yi Lu ◽  
Zhe Zuo ◽  
Zhenyu Zhang ◽  
Changlu Zhao ◽  
Fujun Zhang
2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Jinlong Liu ◽  
Hemanth Kumar Bommisetty ◽  
Cosmin Emil Dumitrescu

Heavy-duty compression-ignition (CI) engines converted to natural gas (NG) operation can reduce the dependence on petroleum-based fuels and curtail greenhouse gas emissions. Such an engine was converted to premixed NG spark-ignition (SI) operation through the addition of a gas injector in the intake manifold and of a spark plug in place of the diesel injector. Engine performance and combustion characteristics were investigated at several lean-burn operating conditions that changed fuel composition, spark timing, equivalence ratio, and engine speed. While the engine operation was stable, the reentrant bowl-in-piston (a characteristic of a CI engine) influenced the combustion event such as producing a significant late combustion, particularly for advanced spark timing. This was due to an important fraction of the fuel burning late in the squish region, which affected the end of combustion, the combustion duration, and the cycle-to-cycle variation. However, the lower cycle-to-cycle variation, stable combustion event, and the lack of knocking suggest a successful conversion of conventional diesel engines to NG SI operation using the approach described here.


2021 ◽  
pp. 1-29
Author(s):  
Ratnak Sok ◽  
Kei Yoshimura ◽  
Kenjiro Nakama ◽  
Jin Kusaka

Abstract The oxygen-depleted environment in the recompression stroke can convert gasoline fuel into light hydrocarbons due to thermal cracking, partial oxidation, and water-gas shift reactions. These reformate species can influence the combustion characteristics of gasoline direct injection homogeneous charge compression ignition (GDI-HCCI) engines. In this work, the combustion phenomena are investigated using a single-cylinder research engine under a medium load. The main combustion phases are experimentally advanced by direct fuel injection into the negative valve overlap (NVO) compared with that of intake stroke under single/double pulse injections. NVO peak in-cylinder pressures are lower than that of motoring due to the limited O2 concentration, emphasizing that endothermic reactions occur during the overlap. This phenomenon limits the oxidation reactions, and the thermal effect is not pronounced. The 0-D chemical kinetics results present the same increasing tendencies of classical reformed species of rich-mixture such as C3H6, C2H4, CH4, CO, and H2 as functions of injection timings. Predicted ignition delays are shortened due to the additions of these reformed species. The influences of the reformates on the main combustion are confirmed by 3-D CFD calculations, and the results show that OH radicals are advanced under NVO injections relative to intake stroke injections. Consequently, earlier heat release and cylinder pressure are noticeable. Parametric studies on the effects of injection pressure, double-pulse injection, and equivalence ratio on the combustion and emissions are also discussed experimentally.


1932 ◽  
Vol 36 (261) ◽  
pp. 733-787 ◽  
Author(s):  
C. B. Dicksee

In this paper the author does not propose to deal with any particular form or type of engine or fuel-injection system, but to discuss some of the problems which are encountered when engaged on the development of a high-speed compression-ignition engine.The main problems to be solved consist in devising suitable means for utilising to the fullest possible extent the oxygen available within the cylinder and for avoiding the production of smoke and noise and, in so far as it is connected with combustion conditions, smell.


Author(s):  
Gong Chen

It is always desirable for a heavy-duty compression-ignition engine, such as a diesel engine, to possess a capability of using alternate liquid fuels without significant hardware modification to the engine baseline. Because fuel properties vary between various types of liquid fuels, it is important to understand the impact and effects of the fuel properties on engine operating and output parameters. This paper intends and attempts to achieve that understanding and to predict the qualitative effects by studying analytically and qualitatively how a heavy-duty compression-ignition engine would respond to the variation of fuel properties. The fuel properties considered in this paper mainly include the fuel density, compressibility, heating value, viscosity, cetane number, and distillation temperature range. The qualitative direct and end effects of the fuel properties on engine bulk fuel injection, in-cylinder combustion, and outputs are analyzed and predicted. Understanding these effects can be useful in analyzing and designing a compression-ignition engine for using alternate liquid fuels.


2018 ◽  
Vol 184 ◽  
pp. 01013
Author(s):  
Corneliu Cofaru ◽  
Mihaela Virginia Popescu

The paper presents the research designed to develop a HCCI (Homogenous Charge Compression Ignition) engine starting from a spark ignition engine platform. The chosen test engine was a single cylinder, four strokes provided with a carburettor. The results of experimental research data obtained on this version were used as a baseline for the next phase of the research. In order to obtain the HCCI configuration, the engine was modified, as follows: the compression ratio was increased from 9.7 to 11.5 to ensure that the air – fuel mixture auto-ignite and to improve the engine efficiency; the carburettor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass; the valves shape were modified to provide a safety engine operation by ensuring the provision of sufficient clearance beetween the valve and the piston; the exchange gas system was changed from fixed timing to variable valve timing to have the possibilities of modification of quantities of trapped burnt gases. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.


2018 ◽  
Vol 7 (4.24) ◽  
pp. 157 ◽  
Author(s):  
P Moulali ◽  
T H Prasad ◽  
B D Prasad

In this paper the emission characteristics and performance of various bio diesel fuels (Tyre pyrolysis oil (TPO), Micro algae oil and Pig animal fat oil) were experimented. A single cylinder, water cooled diesel engine was modified in to homogeneous charge compression ignition engine (HCCI) with adopted port fuel injection (PFI) technique. The effects of air fuel ratio, intake temperature, injection pressure and EGR rate exhaust emissions were explained in a broad manner. The analysis of the exhaust emissions are integrated to oxides of Nitrogen (NOx), Carbon Monoxide (CO), unburned hydro carbons (UHC), smoke and soot. The performance analysis was also included on specific fuel consumption and break thermal efficiency. The basic requirements for HCCI engine is the homogeneous mixture preparation of air and fuel. This mixture formation was done by adopting port fuel injection technique and external devices were also used for bio diesel vaporization and mixture preparation. The combustion processes were measured with different EGR system.  The experimental results of different bio diesel fuels with HCCI engine mode were recorded and evaluated. A small increase in CO and HC emissions were observed with increasing bio diesel content due to slow evaporation rate of bio diesel. A significant reduction in NOx emission was also observed with respect to difference in bio diesel blends. Micro algae oil was found more stable compared with other bio diesel fuels due to the property of fuel vaporization and low heat releasing.


Sign in / Sign up

Export Citation Format

Share Document