Clinical Perspective of Electrospun Nanofibers as a Drug Delivery Strategy for Regenerative Endodontics

2016 ◽  
Vol 3 (3) ◽  
pp. 209-220 ◽  
Author(s):  
Maria T. P. Albuquerque ◽  
Juliana Y. Nagata ◽  
Anibal R. Diogenes ◽  
Asma A. Azabi ◽  
Richard L. Gregory ◽  
...  
2021 ◽  
Vol 19 ◽  
Author(s):  
Nura Brimo ◽  
Dilek Çökeliler Serdaroğlu ◽  
Busra Uysal

: Nanomaterials have various features that make these types of materials able to be applied in different biomedical applications like, diagnosis, treatment, and drug delivery. Using such materials in endodontic filed both to face the challenges that occur during treatment processes and to make these materials have an antibacterial effect without showing any harm on the host cells. The approach of nanofibers loaded with various antibacterial drugs offers a potential treatment method to enhance the elimination procedure of intracanal biofilms. Clinically, many models of bacterial biofilms have been prepared under in vitro conditions for different aims. The process of drug delivery from polymeric nanofibers is based on the principle that the releasing ratio of drug molecules increases due to the increase in the surface area of the hosted structure. In our review, we discuss diverse approaches of loading/releasing drugs on/from nanofibers and we summarized many studies about electrospun nanofibers loaded various drugs applied in the endodontic field. Moreover, we argued both the advantages and the limitations of these modern endodontic treatment materials comparing them with the traditional ones.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 241
Author(s):  
Thangavel Ponrasu ◽  
Bei-Hsin Chen ◽  
Tzung-Han Chou ◽  
Jia-Jiuan Wu ◽  
Yu-Shen Cheng

The fast-dissolving drug delivery systems (FDDDSs) are developed as nanofibers using food-grade water-soluble hydrophilic biopolymers that can disintegrate fast in the oral cavity and deliver drugs. Jelly fig polysaccharide (JFP) and pullulan were blended to prepare fast-dissolving nanofiber by electrospinning. The continuous and uniform nanofibers were produced from the solution of 1% (w/w) JFP, 12% (w/w) pullulan, and 1 wt% Triton X-305. The SEM images confirmed that the prepared nanofibers exhibited uniform morphology with an average diameter of 144 ± 19 nm. The inclusion of JFP in pullulan was confirmed by TGA and FTIR studies. XRD analysis revealed that the increased crystallinity of JFP/pullulan nanofiber was observed due to the formation of intermolecular hydrogen bonds. The tensile strength and water vapor permeability of the JFP/pullulan nanofiber membrane were also enhanced considerably compared to pullulan nanofiber. The JFP/pullulan nanofibers loaded with hydrophobic model drugs like ampicillin and dexamethasone were rapidly dissolved in water within 60 s and release the encapsulants dispersive into the surrounding. The antibacterial activity, fast disintegration properties of the JFP/pullulan nanofiber were also confirmed by the zone of inhibition and UV spectrum studies. Hence, JFP/pullulan nanofibers could be a promising carrier to encapsulate hydrophobic drugs for fast-dissolving/disintegrating delivery applications.


2018 ◽  
Vol 106 (4) ◽  
pp. 1092-1103 ◽  
Author(s):  
Masoud Dadras Chomachayi ◽  
Atefeh Solouk ◽  
Somaye Akbari ◽  
Davoud Sadeghi ◽  
Fereshteh Mirahmadi ◽  
...  

2018 ◽  
Vol 15 (10) ◽  
pp. 1360-1374 ◽  
Author(s):  
Erick José Torres-Martinez ◽  
José Manuel Cornejo Bravo ◽  
Aracely Serrano Medina ◽  
Graciela Lizeth Pérez González ◽  
Luis Jesús Villarreal Gómez

ChemInform ◽  
2015 ◽  
Vol 46 (15) ◽  
pp. no-no
Author(s):  
Radhakrishnan Sridhar ◽  
Rajamani Lakshminarayanan ◽  
Kalaipriya Madhaiyan ◽  
Veluchamy Amutha Barathi ◽  
Keith Hsiu Chin Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document