scholarly journals Artificial intelligence-based predictive model of nanoscale friction using experimental data

Friction ◽  
2021 ◽  
Author(s):  
Marko Perčić ◽  
Saša Zelenika ◽  
Igor Mezić

AbstractA recent systematic experimental characterisation of technological thin films, based on elaborated design of experiments as well as probe calibration and correction procedures, allowed for the first time the determination of nanoscale friction under the concurrent influence of several process parameters, comprising normal forces, sliding velocities, and temperature, thus providing an indication of the intricate correlations induced by their interactions and mutual effects. This created the preconditions to undertake in this work an effort to model friction in the nanometric domain with the goal of overcoming the limitations of currently available models in ascertaining the effects of the physicochemical processes and phenomena involved in nanoscale contacts. Due to the stochastic nature of nanoscale friction and the relatively sparse available experimental data, meta-modelling tools fail, however, at predicting the factual behaviour. Based on the acquired experimental data, data mining, incorporating various state-of-the-art machine learning (ML) numerical regression algorithms, is therefore used. The results of the numerical analyses are assessed on an unseen test dataset via a comparative statistical validation. It is therefore shown that the black box ML methods provide effective predictions of the studied correlations with rather good accuracy levels, but the intrinsic nature of such algorithms prevents their usage in most practical applications. Genetic programming-based artificial intelligence (AI) methods are consequently finally used. Despite the marked complexity of the analysed phenomena and the inherent dispersion of the measurements, the developed AI-based symbolic regression models allow attaining an excellent predictive performance with the respective prediction accuracy, depending on the sample type, between 72% and 91%, allowing also to attain an extremely simple functional description of the multidimensional dependence of nanoscale friction on the studied variable process parameters. An effective tool for nanoscale friction prediction, adaptive control purposes, and further scientific and technological nanotribological analyses is thus obtained.

2018 ◽  
Vol 84 (10) ◽  
pp. 23-28
Author(s):  
D. A. Golentsov ◽  
A. G. Gulin ◽  
Vladimir A. Likhter ◽  
K. E. Ulybyshev

Destruction of bodies is accompanied by formation of both large and microscopic fragments. Numerous experiments on the rupture of different samples show that those fragments carry a positive electric charge. his phenomenon is of interest from the viewpoint of its potential application to contactless diagnostics of the early stage of destruction of the elements in various technical devices. However, the lack of understanding the nature of this phenomenon restricts the possibility of its practical applications. Experimental studies were carried out using an apparatus that allowed direct measurements of the total charge of the microparticles formed upon sample rupture and determination of their size and quantity. The results of rupture tests of duralumin and electrical steel showed that the size of microparticles is several tens of microns, the particle charge per particle is on the order of 10–14 C, and their amount can be estimated as the ratio of the cross-sectional area of the sample at the point of discontinuity to the square of the microparticle size. A model of charge formation on the microparticles is developed proceeding from the experimental data and current concept of the electron gas in metals. The model makes it possible to determine the charge of the microparticle using data on the particle size and mechanical and electrical properties of the material. Model estimates of the total charge of particles show order-of-magnitude agreement with the experimental data.


2011 ◽  
Vol 486 ◽  
pp. 262-265
Author(s):  
Amit Kohli ◽  
Mudit Sood ◽  
Anhad Singh Chawla

The objective of the present work is to simulate surface roughness in Computer Numerical Controlled (CNC) machine by Fuzzy Modeling of AISI 1045 Steel. To develop the fuzzy model; cutting depth, feed rate and speed are taken as input process parameters. The predicted results are compared with reliable set of experimental data for the validation of fuzzy model. Based upon reliable set of experimental data by Response Surface Methodology twenty fuzzy controlled rules using triangular membership function are constructed. By intelligent model based design and control of CNC process parameters, we can enhance the product quality, decrease the product cost and maintain the competitive position of steel.


2021 ◽  
Vol 11 (8) ◽  
pp. 1269-1287
Author(s):  
Xiangyu Huo ◽  
Li Zhang ◽  
Mingli Yang

Energetic materials (EMs) are one of the necessities in many military and civilian applications. Measuring the thermodynamic behaviors of detonation products of EMs at high temperature and high pressure, their equations of state (EOSs) not only serve as a basis in the design of novel materials, but also provide valuable information for their practical applications. The EOS study has a long history, but keeps moving all the time. Various EMs have been developed, the EOS of detonation products provides abundant information in the thermochemistry, hydromechanics and detonation physics, which in turn feedbacks the development of novel EMs and their EOSs. With the development of experimental techniques and computer simulations, many EOSs have been proposed for various explosives in recent years. While experiments keep their fundamental roles, integrated theory-experiment study has become the main approach to the EOS establishment for novel EMs. Moreover, computer simulations based on interatomic and/or intermolecular interaction will have great potential in the future when big data and artificial intelligence are introduced into the field.


2021 ◽  
Author(s):  
Gaston Latessa ◽  
Angela Busse ◽  
Manousos Valyrakis

<p>The prediction of particle motion in a fluid flow environment presents several challenges from the quantification of the forces exerted by the fluid onto the solids -normally with fluctuating behaviour due to turbulence- and the definition of the potential particle entrainment from these actions. An accurate description of these phenomena has many practical applications in local scour definition and to the design of protection measures.</p><p>In the present work, the actions of different flow conditions on sediment particles is investigated with the aim to translate these effects into particle entrainment identification through analytical solid dynamic equations.</p><p>Large Eddy Simulations (LES) are an increasingly practical tool that provide an accurate representation of both the mean flow field and the large-scale turbulent fluctuations. For the present case, the forces exerted by the flow are integrated over the surface of a stationary particle in the streamwise (drag) and vertical (lift) directions, together with the torques around the particle’s centre of mass. These forces are validated against experimental data under the same bed and flow conditions.</p><p>The forces are then compared against threshold values, obtained through theoretical equations of simple motions such as rolling without sliding. Thus, the frequency of entrainment is related to the different flow conditions in good agreement with results from experimental sediment entrainment research.</p><p>A thorough monitoring of the velocity flow field on several locations is carried out to determine the relationships between velocity time series at several locations around the particle and the forces acting on its surface. These results a relevant to determine ideal locations for flow investigation both in numerical and physical experiments.</p><p>Through numerical experiments, a large number of flow conditions were simulated obtaining a full set of actions over a fixed particle sitting on a smooth bed. These actions were translated into potential particle entrainment events and validated against experimental data. Future work will present the coupling of these LES models with Discrete Element Method (DEM) models to verify the entrainment phenomena entirely from a numerical perspective.</p>


2021 ◽  
Vol 87 (10) ◽  
pp. 783-786
Author(s):  
Kunihito KATO ◽  
Masashi NISHIYAMA ◽  
Ryosuke KAWANISHI ◽  
Hirokatsu KATAOKA

1968 ◽  
Vol 90 (2) ◽  
pp. 395-404 ◽  
Author(s):  
H. N. Ketola ◽  
J. M. McGrew

A theory of the partially wetted rotating disk is described and experimental data presented which verify the application of this theory in practical applications. Four different flow regimes may be identified according to the value of the disk Reynolds number and the spacing ratio between the disk and stationary wall. The analytical expressions for prediction of the pressure gradient developed and the frictional resistance are uniquely determined by the disk Reynolds number, spacing ratio, and the degree of wetting of the disk.


2021 ◽  
Author(s):  
S. Gómez ◽  
D. Uzcátegui ◽  
I. Machuca ◽  
E. S. Gómez ◽  
S. P. Walborn ◽  
...  

Abstract Certification of quantum nonlocality plays a central role in practical applications like device-independent quantum cryptography and random number generation protocols. These applications entail the challenging problem of certifying quantum nonlocality, something that is hard to achieve when the target quantum state is only weakly entangled, or when the source of errors is high, e.g. when photons propagate through the atmosphere or a long optical fiber. Here we introduce a technique to find a Bell inequality with the largest possible gap between the quantum prediction and the classical local hidden variable limit for a given set of measurement frequencies. Our method represent an efficient strategy to certify quantum nonlocal correlations from experimental data without requiring extra measurements, in the sense that there is no Bell inequality with a larger gap than the one provided. Furthermore, we also reduce the photodetector efficiency required to close the detection loophole. We illustrate our technique by improving the detection of quantum nonlocality from experimental data obtained with weakly entangled photons.


2020 ◽  
Author(s):  
AmirAbbas Eslami Shafigh ◽  
Pante'a Davoudifar

Abstract We announce PHIT as a numerical model for simulating of hadroproduction and compare our results with other models and experimental data. Our code, although very simple, imitates the expected results acceptably compared to other more detailed physical models. Moreover, PHIT is fast and easily executable on an ordinary PC. These advantages make PHIT an ideal choice for practical applications of an event generator.


2012 ◽  
Vol 630 ◽  
pp. 473-478 ◽  
Author(s):  
Fei Wan ◽  
Guo Xi Li ◽  
Jing Zhong Gong ◽  
Bao Zhong Wu

To change the status of time-consuming and over-reliance on technicians in mechanical system alignment process, the ACP technology is presented. The mapping between alignment process parameters and dynamic parameters was established through contact theory to build the agent model for parts. While the second mapping between dynamic parameters and machine dynamic characteristics is calculated by dynamic simulation software to conduct computational experiments. Experimental data is analyzed in order to implement data mine, optimize the alignment process, guide technician alignment, modify the theory mapping and improve the alignment efficiency.


2016 ◽  
Vol 852 ◽  
pp. 859-866
Author(s):  
Milind Havanur ◽  
A. Arockia Selvakumar

Grease dispensing unit is a well invented tool for greasing application which preserves health of operator working and ensures optimal quantity. There are fluctuations in the process of grease dispensing which is dependent on process parameters which make the grease dispensing. The properties of grease vary which depend on environmental conditions. In this paper the modeling of grease dispensing process using artificial intelligence method, fuzzy logic to optimize the flow of grease by considering the factors affecting the flow of grease and usage of automated system for grease dispensing process. The work involves usage of LabVIEW for modeling of fuzzy logic network Based on the results obtained a detailed discussions were made on how to implement the fuzzy logic system for optimization of flow of grease for the existing process. Further, the work also details the future scope of work that can be carried out.


Sign in / Sign up

Export Citation Format

Share Document