scholarly journals Constant frequency operation of parallel resonant converter for constant-current constant-voltage battery charger applications

2018 ◽  
Vol 7 (1) ◽  
pp. 186-199 ◽  
Author(s):  
Taha Nurettin GÜCIN ◽  
Muhammet BIBEROĞLU ◽  
Bekir FINCAN
Energies ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 951
Author(s):  
Alberto Pernía ◽  
Juan Díaz-González ◽  
Miguel Prieto ◽  
José Fernández-Rubiera ◽  
Manés Fernández-Cabanas ◽  
...  

Author(s):  
Indhana Sudiharto ◽  
Moch. Igam Rahadyan ◽  
Ony Asrarul Qudsi

This research presents a battery charger design that can charge faster than using a PWM type solar charge controller (SCC). SCC is often operated when the battery capacity is 80% so that the charging current that can be provided is only 10% to 20% of the battery capacity. The battery charging method applied in this study uses the principle of fast charging by adjusting the value of the current and the output voltage value of the buck converter. Fast charging has its own characteristic, obviously, the charging rate that is greater than the usual charging method, which is up to 1C of the battery capacity. The principle of fast charging in this study uses the constant current / constant voltage method. This converter is designed with the ability to produce current by the charging rate of 1C from a 12Ah battery capacity of 12 A and an output voltage of 16.8 V. To ensure that the output of the converter matches the setpoint, the duty cycle value is adjusted using fuzzy control. Based on the results obtained from the simulation, the control of this study obtained an output current 12  Amperes with error ripple current around 8.3%. The SOC on this battery increased by 75.74% in 45 minutes.


Author(s):  
Pi-Yun Chen ◽  
Kuei-Hsiang Chao ◽  
Yu-Sheng Tsai

This paper aims to present a smart high speed battery charger, powered by a photovoltaic module array, for a LiFePO4 battery as a solar energy storage device. With a battery charging strategy, the presented battery charger involves a Buck converter as the core equipped with a simple maximum power point (MPP) tracker. Considering complexity reduction and easy hardware implementation, a constant voltage MPP tracking approach is adopted such that the maximum amount of output power can be delivered to the load in response to an arbitrary change in the solar radiation. A smart two-stage charging strategy, with a constant current mode followed by a constant voltage mode, is employed in such a way that the battery charge process can be accelerated largely, while the damage caused by overcharging can be prevented. In the end, the performance of this proposal is validated experimentally.


2021 ◽  
Vol 11 (24) ◽  
pp. 12143
Author(s):  
Jiaqi Wu ◽  
Xiaodong Li ◽  
Sheng-Zhi Zhou ◽  
Song Hu ◽  
Hao Chen

To meet the requirements of charging the mainstream rechargeable batteries, in this work, a dual-bridge resonant converter (DBRC) is operated as a battery charger. Thanks to the features of this topology, the required high efficiency can be achieved with a wide range of battery voltage and current by using different modulation variables. Firstly, a typical charging process including constant-voltage stage and constant-current stage is indicated. Then, two different modulation methods of the DBRC are proposed, both of which can realize constant-voltage charging and constant-current charging. Method I adopts phase-shift modulation with constant switching frequency while Method II adopts varying frequency modulation. Furthermore, as guidance for practical application, the design principles and detailed design procedures of the DBRC are customized for the two modulation methods respectively in order to reduce the switching loss and conduction loss. Consequently, the full soft-switching operation with low rms tank current is achieved under the two modulation methods, which contributes to the high efficiency of the whole charging process. At last extensive simulation and experimental tests on a lab prototype converter are performed, which prove the feasibility and effectiveness of the proposed modulation strategies.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Youssef Ziadi ◽  
Hassan Qjidaa

This paper presents a high efficiency Li-ion battery LDO-based charger IC which adopted a three-mode control: trickle constant current, fast constant current, and constant voltage modes. The criteria of the proposed Li-ion battery charger, including high accuracy, high efficiency, and low size area, are of high importance. The simulation results provide the trickle current of 116 mA, maximum charging current of 448 mA, and charging voltage of 4.21 V at the power supply of 4.8–5 V, using 0.18 μm CMOS technology.


Sign in / Sign up

Export Citation Format

Share Document