scholarly journals Hydrazinecarbothioamide Derivative as an Effective Inhibitor for Corrosion Control: Electrochemical, Surface and Theoretical Studies

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Manjunath Bairy ◽  
Mikitha Pais ◽  
P. Preethi Kumari ◽  
Suma A. Rao

Abstract Aluminium has played a significant role in the advancement of metal matrix composites (MMC) and has drawn the attention of researchers since Al composites find extensive application in aerospace, military and automobile industries. This paper describes the corrosion property of 6061 Al-15 vol%. SiC(p) composites in hydrochloric acid medium. This composite with high strength-to-weight ratio and other alluring properties undergoes corrosion in acid media and a study has been made in 0.5 M hydrochloric acid using (2Z)-2-(2-hydroxy-3methoxybenzylidene) hydrazinecarbothioamide (HCT) as an inhibitor. Results of the electrochemical studies and surface morphology are presented. With the increase in HCT concentration, inhibition efficiency increased. But efficiency decreased with an increase in temperature. The maximum efficiency was found to be 56.8% for the addition of 10 × 10–5 M HCT concentration at 303 K. The inhibitor was found to behave as a mixed inhibitor affecting both anodic metal dissolution reaction and cathodic hydrogen evolution to the same extent. The HCT molecules were found to physisorb over the Al-composite surface and adsorption followed Langmuir’s adsorption isotherm. Adsorption of HCT was confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Computational studies using density functional theory (DFT) supported experimental findings. Density functional theory calculations gave a clear insight into the mechanistic aspects of corrosion inhibition. Graphic Abstract

2006 ◽  
Vol 71 (11-12) ◽  
pp. 1525-1531 ◽  
Author(s):  
Wojciech Grochala

The enthalpy of four polymorphs of CaN has been scrutinized at 0 and 100 GPa using density functional theory calculations. It is shown that structures of diamagnetic calcium diazenide (Ca2N2) are preferred over the cubic ferromagnetic polymorph (CaN) postulated before, both at 0 and 100 GPa.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chih-Chuen Lin ◽  
Phani Motamarri ◽  
Vikram Gavini

AbstractWe present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.


2021 ◽  
Vol 60 (8) ◽  
pp. 6016-6026
Author(s):  
Aydar Rakhmatullin ◽  
Maxim S. Molokeev ◽  
Graham King ◽  
Ilya B. Polovov ◽  
Konstantin V. Maksimtsev ◽  
...  

Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Long Lin ◽  
Linwei Yao ◽  
Shaofei Li ◽  
Zhengguang Shi ◽  
Kun Xie ◽  
...  

AbstractFinding the active sites of suitable metal oxides is a key prerequisite for detecting CH$$_4$$ 4 . The purpose of the paper is to investigate the adsorption of CH$$_4$$ 4 on intrinsic and oxygen-vacancies CuO (111) and (110) surfaces using density functional theory calculations. The results show that CH$$_4$$ 4 has a strong adsorption energy of −0.370 to 0.391 eV at all site on the CuO (110) surface. The adsorption capacity of CH$$_4$$ 4 on CuO (111) surface is weak, ranging from −0.156 to −0.325 eV. In the surface containing oxygen vacancies, the adsorption capacity of CuO surface to CH$$_4$$ 4 is significantly stronger than that of intrinsic CuO surface. The results indicate that CuO (110) has strong adsorption and charge transfer capacity for CH$$_4$$ 4 , which may provide experimental guidance.


Author(s):  
Pei Zhao ◽  
Bundet Boekfa ◽  
Ken-ichi Shimizu ◽  
Masaru Ogura ◽  
Masahiro Ehara

Density functional theory calculations have been applied to study the selectivity caused by the cage size during the selective catalytic reduction of NO by NH3 over the Cu-exchanged zeolites with cha, gme, and aft cages.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2560
Author(s):  
Jianwen Meng ◽  
Yong Pan ◽  
Fan Yang ◽  
Yanjun Wang ◽  
Zhongyu Zheng ◽  
...  

The thermal stability and decomposition kinetics analysis of 1-alkyl-2,3-dimethylimidazole nitrate ionic liquids with different alkyl chains (ethyl, butyl, hexyl, octyl and decyl) were investigated by using isothermal and nonisothermal thermogravimetric analysis combined with thermoanalytical kinetics calculations (Kissinger, Friedman and Flynn-Wall-Ozawa) and density functional theory (DFT) calculations. Isothermal experiments were performed in a nitrogen atmosphere at 240, 250, 260 and 270 °C. In addition, the nonisothermal experiments were carried out in nitrogen and air atmospheres from 30 to 600 °C with heating rates of 5, 10, 15, 20 and 25 °C/min. The results of two heating modes, three activation energy calculations and density functional theory calculations consistently showed that the thermal stability of 1-alkyl-2,3-dimethylimidazolium nitrate ionic liquids decreases with the increasing length of the alkyl chain of the substituent on the cation, and then the thermal hazard increases. This study could provide some guidance for the safety design and use of imidazolium nitrate ionic liquids for engineering.


Sign in / Sign up

Export Citation Format

Share Document