scholarly journals Water Splitting: From Electrode to Green Energy System

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiao Li ◽  
Lili Zhao ◽  
Jiayuan Yu ◽  
Xiaoyan Liu ◽  
Xiaoli Zhang ◽  
...  

AbstractHydrogen (H2) production is a latent feasibility of renewable clean energy. The industrial H2 production is obtained from reforming of natural gas, which consumes a large amount of nonrenewable energy and simultaneously produces greenhouse gas carbon dioxide. Electrochemical water splitting is a promising approach for the H2 production, which is sustainable and pollution-free. Therefore, developing efficient and economic technologies for electrochemical water splitting has been an important goal for researchers around the world. The utilization of green energy systems to reduce overall energy consumption is more important for H2 production. Harvesting and converting energy from the environment by different green energy systems for water splitting can efficiently decrease the external power consumption. A variety of green energy systems for efficient producing H2, such as two-electrode electrolysis of water, water splitting driven by photoelectrode devices, solar cells, thermoelectric devices, triboelectric nanogenerator, pyroelectric device or electrochemical water–gas shift device, have been developed recently. In this review, some notable progress made in the different green energy cells for water splitting is discussed in detail. We hoped this review can guide people to pay more attention to the development of green energy system to generate pollution-free H2 energy, which will realize the whole process of H2 production with low cost, pollution-free and energy sustainability conversion.

Nanoscale ◽  
2021 ◽  
Author(s):  
Haibin Ma ◽  
ChangNing SUN ◽  
Zhili Wang ◽  
Qing Jiang

It is of great importance to develop efficient and low-cost oxygen evolution reaction (OER) electrocatalysts for electrochemical water splitting. Herein, S doped NiCoVOx nanosheets grown on Ni-Foam (S-NiCoVOx/NF) with modified...


Nanoscale ◽  
2019 ◽  
Vol 11 (35) ◽  
pp. 16621-16634 ◽  
Author(s):  
Ghasem Barati Darband ◽  
Mahmood Aliofkhazraei ◽  
Suyeon Hyun ◽  
Alireza Sabour Rouhaghdam ◽  
Sangaraju Shanmugam

Ni–Co–Fe mixed sulfide ultrathin nanosheets obtained by electrodeposition method exhibits excellent electrocatalytic activity. The Ni–Co–Fe nanosheets require the overpotential of 106 and 207 mV to generate 10 mA cm−2 current density for the HER, and OER, respectively.


Proceedings ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 20
Author(s):  
Ala-Juusela ◽  
Zupančič ◽  
Gubina ◽  
Tuerk

The Clean Energy Package foresees a strong roll out of decentralized energy systems with renewable generation and storage. The STORY project has designed and tested six different storage solutions for a decentralized renewable energy system. In the workshop organised in the frame of SP19 conference, we highlighted some of the economic, social and technical barriers to storage in Europe and how these have been addressed.


Author(s):  
Robin J. McDaniel

Small Modular Reactor (SMR) technologies have been recently deemed by the DOE as clean energy, a low carbon-dioxide emitting “alternative energy” source. Recent UN Sustainability Goals and Global Climate Talks to reduce the anthropomorphic Carbon-Dioxide atmospheric concentrations signal a renewed interest and need for nuclear power. The objective of this paper is to present an improved approach to the evaluation of “Hybrid Nuclear Energy Systems”. A hybrid energy system is defined as an energy system that utilizes two or more sources of energy to be used in single or multiple applications. Traditional single sourced energy or power systems require the amount of energy creation and the production of usable power to be carefully balanced. With the introduction of multiple energy sources, loads, and energy capacitors, the design, simulation, and operation of such hybrid systems requires a new approach to analysis and control. This paper introduces three examples of “Hybrid Nuclear Energy Systems”, for large scale power, industrial heat, and electricity generation. The system component independence, reliability, availability, and dynamic control aspects, coupled with component operational decisions presents a new way to optimize energy production and availability. Additional novel hybrid hydro-nuclear systems, concentrated solar-nuclear power desalination systems, and nuclear-insitu petroleum extraction systems are compared. The design aspects of such hybrid systems suitable for process heat, electricity generation, and/or desalination applications are discussed. After a multiple-year research study of past hybrid reactor designs and recent system proposals, the following design evaluation approach is the result of analysis of the best concepts discovered. This review of existing literature has summerized that postulated benefits of Hybrid Nuclear Sytems are; reduced greenhouse gas emissions, increased energy conversion efficiency, high reliability of electricity supply and consistent power quality, reduced fossil fuel dependence, less fresh water consumption, conversion of local coal or shale into higher value fuels, while lowering the risks and costs. As these proposed hybrid systems are interdisciplinary in nature, they will require a new multidisciplinary approach to systems evaluation.


Author(s):  
Sergiy Korinnyi ◽  
Mariia Mikhailutsa ◽  
Anastasiia Bondarenko

The article examines a set of issues related to "green energy" in the world, problems and opportunities from the introduction of alternative energy sources for greening the economy, developing sustainable economy and preserving human potential. Analytical works of some Ukrainian authors have been studied, in which the current state, obstacles to the realization and prospects of "green energy" in the world have been determined. The purpose of the article is to refute the allegations about the need to immediately stop the introduction of "green technologies", including the construction of solar stations. There are two opposing views on the need for green energy, which have been being discussed around the world for the past few decades. The most popular evidence from both sides on this issue is given, in particular, that the planet can be saved only through the active use of renewable energy sources, and on the other hand, that "green energy" at the current level of human development will cause even more environmental and economic problems. The arguments most often expressed by opponents of the active introduction of "green energy" are highlighted, namely: the high cost of new technologies compared to existing types of generation; the inability of "green energy" to solve the problem of warming on the planet with reference to scientific research on the amount of CO2 emissions from different types of generation as a major factor in warming; danger to the energy systems of all countries of the world due to the instability of energy production by natural factors. Counter-arguments on these issues are provided and evidence of the ability and necessity to use clean technologies is provided. The problem, on which the opinions of both parties coincide, is highlighted - the reluctance of "green" investors to spend money on storage systems, energy storage and stabilization of energy systems due to their high cost, size, insufficient energy consumption and insufficient duration of work. It is noted that the issue of developing the latest energy storage and stabilization systems and their installation at new and existing RES stations needs to be addressed immediately, but is not an obstacle to the further development of green energy.


Author(s):  
Pradnya Bodhankar ◽  
Pradip B Sarawade ◽  
Ajayan Vinu ◽  
Gurwinder Singh ◽  
Dattatray Sadashiv Dhawale

Highly efficient, low-cost electrocatalyst having superior activity and stability are the crucial endeavor for practical electrochemical water splitting that involves hydrogen and oxygen evolution reactions (HER and OER). Sustainable production...


2021 ◽  
Author(s):  
Yang Li ◽  
Shumei Chen ◽  
Xin Wu ◽  
Huabin Zhang ◽  
Jian Zhang

Sustainable hydrogen fuel supply through electrochemical water splitting requires high-efficient, low-cost and robust electrocatalysts. Interface engineering is of key importance to improve the catalytic performance in the heterogeneous electrocatalysis system....


2013 ◽  
Author(s):  
Olumide Bello ◽  
Da’Janel Roberts-Smith ◽  
Landon Onyebueke

Hybrid Energy Systems (HES) offer hopeful solutions to an array of challenges circumventing conventional energy usage. From sustainable mobility developments to rural communities, hybrid energy systems can provide reliable energy to suffice any load demand when properly sized. Sizing optimality is essential in maintaining low-cost, high-performance and superior efficiency. The methodology for sizing a Photovoltaic-Wind-Diesel with battery backup hybrid energy system and its accompanying costs are calculated using Homer software. The results are presented in this article. Such costs include the concept of levelized cost of energy (LCOE), time-dependent trade-off considerations necessary to deploy a functional, reliable and cost-effective energy system and comfort. The anticipated output of this economic model validates the feasibility of attaining affordability and optimality in a HES that relies on renewable energy and battery storage for applications of varying scales.


2021 ◽  
Vol 236 ◽  
pp. 02007
Author(s):  
Zhao Pengxiang ◽  
Li Na ◽  
Li Zhiyuan ◽  
Wang Nan

The integrated energy system can realize the complementary advantages of multiple energy sources and effectively solve the problem of low integrated energy efficiency of traditional energy systems. Carrying out research on the interactive scenarios and mechanisms of the energy supply and use modules of the integrated energy system is conducive to promoting the development of clean energy and promoting the indepth integration of energy Internet and distributed energy technology, smart grid technology, and energy storage technology. First, it summarizes the scenarios of the energy supply and use modules of the integrated energy system, and analyzes the interaction mechanism and paths of the energy supply and use modules of the integrated energy system on this basis.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1606
Author(s):  
Peng Fu ◽  
Danny Pudjianto ◽  
Xi Zhang ◽  
Goran Strbac

Hydrogen presents an attractive option to decarbonise the present energy system. Hydrogen can extend the usage of the existing gas infrastructure with low-cost energy storability and flexibility. Excess electricity generated by renewables can be converted into hydrogen. In this paper, a novel multi-energy systems optimisation model was proposed to maximise investment and operating synergy in the electricity, heating, and transport sectors, considering the integration of a hydrogen system to minimise the overall costs. The model considers two hydrogen production processes: (i) gas-to-gas (G2G) with carbon capture and storage (CCS), and (ii) power-to-gas (P2G). The proposed model was applied in a future Great Britain (GB) system. Through a comparison with the system without hydrogen, the results showed that the G2G process could reduce £3.9 bn/year, and that the P2G process could bring £2.1 bn/year in cost-savings under a 30 Mt carbon target. The results also demonstrate the system implications of the two hydrogen production processes on the investment and operation of other energy sectors. The G2G process can reduce the total power generation capacity from 71 GW to 53 GW, and the P2G process can promote the integration of wind power from 83 GW to 130 GW under a 30 Mt carbon target. The results also demonstrate the changes in the heating strategies driven by the different hydrogen production processes.


Sign in / Sign up

Export Citation Format

Share Document