scholarly journals A Review on Nano-Based Drug Delivery System for Cancer Chemoimmunotherapy

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Weiwei Mu ◽  
Qihui Chu ◽  
Yongjun Liu ◽  
Na Zhang

AbstractAlthough notable progress has been made on novel cancer treatments, the overall survival rate and therapeutic effects are still unsatisfactory for cancer patients. Chemoimmunotherapy, combining chemotherapeutics and immunotherapeutic drugs, has emerged as a promising approach for cancer treatment, with the advantages of cooperating two kinds of treatment mechanism, reducing the dosage of the drug and enhancing therapeutic effect. Moreover, nano-based drug delivery system (NDDS) was applied to encapsulate chemotherapeutic agents and exhibited outstanding properties such as targeted delivery, tumor microenvironment response and site-specific release. Several nanocarriers have been approved in clinical cancer chemotherapy and showed significant improvement in therapeutic efficiency compared with traditional formulations, such as liposomes (Doxil®, Lipusu®), nanoparticles (Abraxane®) and micelles (Genexol-PM®). The applications of NDDS to chemoimmunotherapy would be a powerful strategy for future cancer treatment, which could greatly enhance the therapeutic efficacy, reduce the side effects and optimize the clinical outcomes of cancer patients. Herein, the current approaches of cancer immunotherapy and chemoimmunotherapy were discussed, and recent advances of NDDS applied for chemoimmunotherapy were further reviewed.

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 138 ◽  
Author(s):  
Nimisha Singh ◽  
Fadoua Sallem ◽  
Celine Mirjolet ◽  
Thomas Nury ◽  
Suban Kumar Sahoo ◽  
...  

Polydopamine (pDA)-modified iron oxide core-shell nanoparticles (IONPs) are developed and designed as nanovectors of drugs. Reactive quinone of pDA enhances the binding efficiency of various biomolecules for targeted delivery. Glutathione disulfide (GSSG), an abundant thiol species in the cytoplasm, was immobilized on the pDA-IONP surface. It serves as a cellular trigger to release the drug from the nanoparticles providing an efficient platform for the drug delivery system. Additionally, GSSG on the surface was further modified to form S-nitrosoglutathione that can act as nitric oxide (NO) donors. These NPs were fully characterized using a transmission electronic microscopy (TEM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), zeta potential, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and UV-vis spectroscopies. Doxorubicin (DOX) and docetaxel (DTX) are two anticancer drugs, which were loaded onto nanoparticles with respective loading efficiencies of 243 and 223 µmol/g of IONPs, calculated using TGA measurements. DOX release study, using UV-vis spectroscopy, showed a pH responsive behavior, making the elaborated nanocarrier a potential drug delivery system. (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium (MTS) and apoptosis assays were performed on PC3 cell lines to evaluate the efficiency of the developed nanocarriers. These nanoparticles thus can prove their worth in cancer treatment on account of their easy access to the site and release of drug in response to changes to internal parameters such as pH, chemicals, etc.


2021 ◽  
Vol 332 ◽  
pp. 301-311
Author(s):  
Đorđe Cvjetinović ◽  
Željko Prijović ◽  
Drina Janković ◽  
Magdalena Radović ◽  
Marija Mirković ◽  
...  

2018 ◽  
Vol 17 (10) ◽  
pp. 668-688 ◽  
Author(s):  
N.M. Salkho ◽  
R.Z. Turki ◽  
O. Guessoum ◽  
A.M. Martins ◽  
R.F. Vitor ◽  
...  

2021 ◽  
Vol 06 ◽  
Author(s):  
Bhavna Choudhary ◽  
Pubalee Sarmah

: Application of nanomaterials in drug delivery is a rapidly developing area of interest. The main intention in the development of these drug delivery vehicles is to successfully know the targeted delivery-related efforts and carrying drugs to the required sites of therapeutic action with reduction in adverse side effects. The task for targeted drug delivery to reach pathological are-as has increased advances in nanomedicine. But the high toxicity of uncoated nanoparticles restricts the use in humans. So, to reduce toxicity, the encapsulation of nanoparticles is done with bio compatible materials. There are many efficient delivery systems thathave been developed in which nanoparticles are loaded with the cancer drug involvingbi-layer molecules. The fields of nanotechnology has always played a crucial role in electronics, biology and medicine. Its application can be ap-praised, as it involves the materials to be designed at atomic and molecular level.This article reviews different types of nano- materials used as delivery vehicles for chemotherapeutic agents and their mechanism of action that improve the therapeutic efficacy of the drugs. The recent scientific advances in the area of chemotherapy are also discussed with emphasizingthe fu-ture prospects in cancer treatments.


Author(s):  
Yi Yin ◽  
Jingjing Yang ◽  
Yongchun Pan ◽  
Zhen Guo ◽  
Yanfeng Gao ◽  
...  

Abstract Background and Aims Alteration to both the structures and functions of mesenteric lymphatic vessels is a typical hallmark of Crohn’s disease [CD]. Dysfunctional lymphatics was observed in patients with both CD and experimental colitis, suggesting mesenteric lymphatics could be potential therapeutic targets. This study aimed to develop a nano-delivery system which can enhance drug delivery in mesenteric lymphatic tissue [MLT] and evaluate the therapeutic effects in Crohn’s colitis. Methods We designed a mesoporous silica nanoparticle [MSN] conjugated with long-chain fatty acid [LMSN] and covered with enteric coating [ELMSN] which can be specifically transported via the mesenteric lymphatic system. The therapeutic efficacy of laquinimod-loaded nanoparticles [LAQ@ELMSN] was evaluated in the well-established interleukin [IL]-10−/− spontaneous experimental colitis. Results ELMSNs induced sustainable drug release that markedly increased drug concentration in MLT. In experimental colitis, the lymphatics-targeting drug delivery system suppressed lymphangitis and promoted lymphatic drainage. The downregulation of pro-inflammatory cytokines and the downstream NF-κB-related proteins efficiently inhibited lymphangiogenesis and restored tight junctions of mesenteric lymphatic vessels [MLVs]. LAQ@ELMSN showed a superior therapeutic effect in ameliorating intestinal inflammation compared with free drug administration. Alteration of gut microbiota and metabolites in experimental colitis was also reversed by LAQ@ELMSN. Conclusion Our study demonstrates a convenient, orally administered drug delivery system which enhances drug release in MLT. The results confirm the contribution of the mesenteric lymphatic system to the pathogenesis of gut inflammation and shed light on the application of lymphatics-targeting drug delivery therapy as a potential therapeutic strategy for CD treatment.


Sign in / Sign up

Export Citation Format

Share Document