scholarly journals Vortex fluidic mediated one-step fabrication of polyvinyl alcohol hydrogel films with tunable surface morphologies and enhanced self-healing properties

2020 ◽  
Vol 63 (7) ◽  
pp. 1310-1317 ◽  
Author(s):  
Javad Tavakoli ◽  
Colin L. Raston ◽  
Yong Ma ◽  
Youhong Tang
2016 ◽  
Vol 11 (1) ◽  
pp. 102-103 ◽  
Author(s):  
Jirapornchai Suksaeree ◽  
Chitradee Luprasong ◽  
Chaowalit Monton

Author(s):  
Wenhao Zhao ◽  
Dongzhi Zhang ◽  
Yan Yang ◽  
Chen Du ◽  
Bao Zhang

The conductive and biocompatible hybrid hydrogel was successfully assembled into an adhesive, flexible wearable sensor for ultra-sensitive human-computer interaction and smart detection, which holds excellent self-healing capability. This conductive, repairable...


Author(s):  
Hanh

In this work, ZnO nanorods (NRs) were successfully grown on printed circuit board substrates (PCBs) by utilizing a one-step, seedless, low-cost hydrothermal method. It was shown that by implementing a galvanic cell structure in an aqueous solution of 80 mM of zinc nitrate hexahydrate and hexamethylenetetramine, ZnO NRs can directly grow on the PCBs substrate without the assistance of a seed layer. The effect of hydrothermal time on the surface morphologies, and the crystallinity of the as-grown ZnO nanorods (NRs) was also investigated. The as-grown ZnO NRs also exhibited a significant enhancement in vertical growth and their crystallinity with 5 hour growth.


2021 ◽  
Vol 30 (Sup9a) ◽  
pp. IVi-IVx
Author(s):  
Chukwuma O Agubata ◽  
Mary A Mbah ◽  
Paul A Akpa ◽  
Godwin Ugwu

Aim: Self-healing, swellable and biodegradable polymers are vital materials that may facilitate the different stages of wound healing. The aim of this research was to prepare wound healing films using self-healing polyvinyl alcohol (PVA), swellable hydroxypropyl methylcellulose (HPMC), biodegradable polyglycolic acid (PGA) sutures and ciprofloxacin antibiotic for improved treatment outcome. Methods: Films were formulated through aqueous-based mixing of varying amounts of polyvinyl alcohol (10–20% weight/weight (w/w)) and hydroxypropyl methylcellulose (0.5, 1% w/w) with fixed quantities of ciprofloxacin. PGA sutures were placed as grids within the wet mixtures of the polymers and ciprofloxacin, and thereafter products were air dried. The formulated films were evaluated for swelling ratio, breaking elongation, folding endurance, moisture uptake and loss, compatibility and in vitro antibiotic release. Furthermore, in vivo wound healing was studied using excision model and histopathological examinations. Results: Swelling ratios were above 1.0 and the films were minimally stretchable, with folding endurance greater than 500. Films were stable while moisture uptake and loss were observed to be less than 30%. Among the optimised hydrogel batches, those containing 10% w/w PVA and 1% w/w HPMC with no PGA showed the highest drug release of 73%, whereas the batches with higher PGA content showed higher percentage wound size reduction with minimal scar. The completeness of wound healing with batches containing PVA, HPMC, ciprofloxacin and PGA, along with the standard, is evident considering the massive cornification, regeneration of the epithelial front and stratum spinosum. Conclusion: The findings show that polymer-based multifunctional composite films are suitable for use as dressings for improved wound healing.


2020 ◽  
Author(s):  
Ehab Awad Al-Emam ◽  
Hilde Soenen ◽  
Joost Caen ◽  
Koen Janssens

Abstract Since cleaning of artworks may cause undesirable physicochemical alterations and is a nonreversible procedure, it is mandatory to adopt the proper cleaning procedure. Such a procedure should remove undesired materials whilst preserving the original surface. In this regard, numerous gels have been developed and exploited for the cleaning of various artwork surfaces. Lately, agarose (AG) and polyvinyl alcohol-borax (PVA-B) hydrogels have been widely employed as cleaning tools by conservators. Both hydrogels show some limitations in specific cleaning practices. In this work, we investigated the influence of including increased levels of agarose into PVA-B systems. For this reason, we performed a detailed characterization on the double network (DN) hydrogel including the chemical structure, the liquid phase retention, the rheological behavior, and the self-healing behavior of various PVA-B/AG double network hydrogels. These new hydrogels revealed better properties than PVA-B hydrogels and obviated their limitations. The inclusion of AG into PVA-B systems enhanced the liquid retention capacity, shape-stability, and mechanical strength of the blend. Furthermore, AG minimized the expelling/syneresis issue that occurs when loading PVA-B systems with low polarity solvents or chelating agents. The resultant double network hydrogel exhibits relevant self-healing properties. The PVA-B/AG double network is a new and useful cleaning tool that can be added to the conservators’ tool-kit. It is ideal for cleaning procedures dealing with porous and complex structured surfaces, vertical surfaces and for long time applications.


2020 ◽  
Vol 383 ◽  
pp. 123203 ◽  
Author(s):  
Yunan Lin ◽  
Rongrong Chen ◽  
Yanjun Zhang ◽  
Zhu Lin ◽  
Qi Liu ◽  
...  

2018 ◽  
Vol 237 ◽  
pp. 02004
Author(s):  
Jirapornchai Suksaeree ◽  
Chomnapas Chuchote

This paper presented the swelling properties of propranolol HCl-loaded polyvinyl alcohol-graft-lactic acid (PPH-loaded PVA-g-LA) hydrogel films. The swelling properties including swelling-deswelling measurement and swelling behaviour in different environmental stimuli fluids such as water, various pH, and various ionic strength were determined. It was found that the swelling properties of the PPH-loaded PVA-g-LA hydrogel films depend on the LA amount addition. They had a good swelling and deswelling in water and acetone. The PPH-loaded PVA-g-LA hydrogel films showed the high swelling in the medium pH 7. Thus, the prepared PPH-loaded PVA-g-LA hydrogel films had a good swelling property that could be used to controlled drug release in pharmaceutical product.


Sign in / Sign up

Export Citation Format

Share Document