scholarly journals Swelling Properties of Propranolol HCl-loaded Polyvinyl Alcohol-graft-lactic Acid Hydrogel Films

2018 ◽  
Vol 237 ◽  
pp. 02004
Author(s):  
Jirapornchai Suksaeree ◽  
Chomnapas Chuchote

This paper presented the swelling properties of propranolol HCl-loaded polyvinyl alcohol-graft-lactic acid (PPH-loaded PVA-g-LA) hydrogel films. The swelling properties including swelling-deswelling measurement and swelling behaviour in different environmental stimuli fluids such as water, various pH, and various ionic strength were determined. It was found that the swelling properties of the PPH-loaded PVA-g-LA hydrogel films depend on the LA amount addition. They had a good swelling and deswelling in water and acetone. The PPH-loaded PVA-g-LA hydrogel films showed the high swelling in the medium pH 7. Thus, the prepared PPH-loaded PVA-g-LA hydrogel films had a good swelling property that could be used to controlled drug release in pharmaceutical product.

2016 ◽  
Vol 11 (1) ◽  
pp. 102-103 ◽  
Author(s):  
Jirapornchai Suksaeree ◽  
Chitradee Luprasong ◽  
Chaowalit Monton

2014 ◽  
Vol 216 ◽  
pp. 205-209
Author(s):  
Monica Cretan Stamate ◽  
Ciprian Stamate

The present paper aims to study the possibility to modify the properties of polyvinyl alcohol (pva) cryogels prepared in the presence of ketoprofen in order to replace the damaged articular cartilage. Articular cartilage is the most important part of articulation characterized by very low friction, high wear resistance, and poor regenerative qualities. Polyvinyl alcohol is a non-expensive polymer, versatile and adaptable to various needs, with exceptional properties such as water solubility, biocompatibility, non-toxicity and with capability to form hydrogels by chemical or physical methods. The aims of this paper are the synthesis, the physicochemical characterization and analysis of the tribological properties of pva cryogels for cartilage replacement and the introduction of new concept in medication by creating the cryogel like a controlled drug release system. The morphology of the cryogels, the interaction between the pva macromolecular chains and medicament has been studied by Scanning Electronic Microscopy. The gels swelling in physiologic ser have been monitored by gravimetric method in order to evidence the hydrophilic properties. The mechanical properties of the cryogels have been investigated by dynamic mechanical measurements. In conclusion, the biomaterial obtained provides good swelling properties, mechanical resistance and it is ideal for extended drug release implantable systems.


2016 ◽  
Vol 11 (1) ◽  
pp. 106-107
Author(s):  
Natawat Chankana ◽  
Chitradee Luprasong ◽  
Chaowalit Monton ◽  
Jirapornchai Suksaeree

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bendadi Hanumantha Rao ◽  
Peddireddy Sreekanth Reddy ◽  
Bijayananda Mohanty ◽  
Krishna R. Reddy

AbstractMicrolevel properties such as mineralogical and chemical compositions greatly control the macro behaviour of expansive soils. In this paper, the combined effect of mineral (i.e. montmorillonite, MMC) and chemical contents (i.e. Ca and Na in their total (T), leachable (L) and exchangeable form (CEC)) on swelling behaviour is investigated in a comprehensive way. Several 3-dimensional (3D) graphs correlating MMC and Ca/Na ratio, together, with swelling property (swelling potential, Sa, and swelling pressure, Sp) are developed. 3D plots, in general, portrayed a non-linear relationship of Sa and Sp with MMC and Ca/Na ratio, together. It is hypothesized that swelling initially is triggered by chemical parameters due to their quick and rapid ionization capability, but the overall swelling phenomenon is largely controlled by MMC. It is importantly found that expansive soils are dominant with divalent Ca++ ions up to MMC of 67% and beyond this percentage, monovalent Na+ ions are prevalent. From the interpretation of results, the maximum Sa of 18% and Sp of 93 kPa is measured at MMC of 43%, (Ca/Na)T of 10–14 and (Ca/Na)L of 2–7. It is concluded from study that total CEC + MMC for determining Sa and (Ca/Na)T + MMC for determining Sp are superior parameters to be considered. The findings of the study also excellently endorsed the results of Foster32, who stated that ionization of Na or Ca depends on the constituent mineral contents. The findings presented herein are unique, interesting and bear very practical significance, as no earlier research work reported such findings by accounting for chemical and mineralogical parameters impact, in tandem, on swelling properties.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 578
Author(s):  
Bilal Harieth Alrimawi ◽  
May Yee Chan ◽  
Xin Yue Ooi ◽  
Siok-Yee Chan ◽  
Choon Fu Goh

Rice starch is a promising biomaterial for thin film development in buccal drug delivery, but the plasticisation and antiplasticisation phenomena from both plasticisers and drugs on the performance of rice starch films are not well understood. This study aims to elucidate the competing effects of sorbitol (plasticiser) and drug (antiplasticiser) on the physicochemical characteristics of rice starch films containing low paracetamol content. Rice starch films were prepared with different sorbitol (10, 20 and 30% w/w) and paracetamol contents (0, 1 and 2% w/w) using the film casting method and were characterised especially for drug release, swelling and mechanical properties. Sorbitol showed a typical plasticising effect on the control rice starch films by increasing film flexibility and by reducing swelling behaviour. The presence of drugs, however, modified both the mechanical and swelling properties by exerting an antiplasticisation effect. This antiplasticisation action was found to be significant at a low sorbitol level or a high drug content. FTIR investigations supported the antiplasticisation action of paracetamol through the disturbance of sorbitol–starch interactions. Despite this difference, an immediate drug release was generally obtained. This study highlights the interplay between plasticiser and drug in influencing the mechanical and swelling characteristics of rice starch films at varying concentrations.


2012 ◽  
Vol 63 (3) ◽  
pp. 957-964 ◽  
Author(s):  
Peng Wang ◽  
Zhen Chen ◽  
Juan Li ◽  
Li Wang ◽  
Guohong Gong ◽  
...  

2004 ◽  
Vol 22 (1) ◽  
pp. 32 ◽  
Author(s):  
David R Rohindra ◽  
Ashveen V Nand ◽  
Jagjit R Khurma

Chitosan hydrogels were prepared by crosslinking chitosan with glutaraldehyde. The swelling behaviour of the crosslinked and uncross-linked hydrogels was measured by swelling the gels in media of different pH and at different temperatures. The swelling behavior was observed to be dependent on pH, temperature and the degree of crosslinking. The gel films were characterized by Fourier transform Infrared spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC). The glass transition temperature (Tg) and the amount of free water in the hydrogels decreased with increasing crosslinking in the hydrogels.


Sign in / Sign up

Export Citation Format

Share Document