Thermally induced slip of a single sawcut granite fracture under biaxial loading

Author(s):  
Changlun Sun ◽  
Li Zhuang ◽  
Sunggyu Jung ◽  
Jangguen Lee ◽  
Jeoung Seok Yoon
Author(s):  
C. S. Giggins ◽  
J. K. Tien ◽  
B. H. Kear ◽  
F. S. Pettit

The performance of most oxidation resistant alloys and coatings is markedly improved if the oxide scale strongly adheres to the substrate surface. Consequently, in order to develop alloys and coatings with improved oxidation resistance, it has become necessary to determine the conditions that lead to spallation of oxides from the surfaces of alloys. In what follows, the morphological features of nonadherent Al2O3, and the substrate surfaces from which the Al2O3 has spalled, are presented and related to oxide spallation.The Al2O3, scales were developed by oxidizing Fe-25Cr-4Al (w/o) and Ni-rich Ni3 (Al,Ta) alloys in air at 1200°C. These scales spalled from their substrates upon cooling as a result of thermally induced stresses. The scales and the alloy substrate surfaces were then examined by scanning and replication electron microscopy.The Al2O3, scales from the Fe-Cr-Al contained filamentary protrusions at the oxide-gas interface, Fig. 1(a). In addition, nodules of oxide have been developed such that cavities were formed between the oxide and the substrate, Fig. 1(a).


Author(s):  
R.T. Blackham ◽  
J.J. Haugh ◽  
C.W. Hughes ◽  
M.G. Burke

Essential to the characterization of materials using analytical electron microscopy (AEM) techniques is the specimen itself. Without suitable samples, detailed microstructural analysis is not possible. Ultramicrotomy, or diamond knife sectioning, is a well-known mechanical specimen preparation technique which has been gaining attention in the materials science area. Malis and co-workers and Glanvill have demonstrated the usefulness and applicability of this technique to the study of a wide variety of materials including Al alloys, composites, and semiconductors. Ultramicrotomed specimens have uniform thickness with relatively large electron-transparent areas which are suitable for AEM anaysis.Interface Analysis in Type 316 Austenitic Stainless Steel: STEM-EDS microanalysis of grain boundaries in austenitic stainless steels provides important information concerning the development of Cr-depleted zones which accompany M23C6 precipitation, and documentation of radiation induced segregation (RIS). Conventional methods of TEM sample preparation are suitable for the evaluation of thermally induced segregation, but neutron irradiated samples present a variety of problems in both the preparation and in the AEM analysis, in addition to the handling hazard.


2021 ◽  
Author(s):  
Cyril Rajnák ◽  
Romana Mičová ◽  
Ján Moncoľ ◽  
Ľubor Dlháň ◽  
Christoph Krüger ◽  
...  

A pentadentate Schiff-base ligand 3,5Cl-L2− and NCSe− form a iron(iii) mononuclear complex [Fe(3,5Cl-L)(NCSe)], which shows a thermally induced spin crossover with a broad hysteresis width of 24 K between 123 K (warming) and 99 K (cooling).


1993 ◽  
Vol 3 (5) ◽  
pp. 631-645 ◽  
Author(s):  
J. Käs ◽  
E. Sackmann ◽  
R. Podgornik ◽  
S. Svetina ◽  
B. Žekš

1997 ◽  
Author(s):  
Clinton Chapman ◽  
John Whitcomb ◽  
Clinton Chapman ◽  
John Whitcomb

2019 ◽  
Author(s):  
Alejandra Gomez-Torres ◽  
J. Rolando Aguilar-Calderón ◽  
Carlos Saucedo ◽  
Aldo Jordan ◽  
Alejandro J. Metta-Magaña ◽  
...  

<p>The masked Ti(II) synthon (<sup>Ket</sup>guan)(<i>η</i><sup>6</sup>-Im<sup>Dipp</sup>N)Ti (<b>1</b>) oxidatively adds across thiophene to give ring-opened (<sup>Ket</sup>guan)(Im<sup>Dipp</sup>N)Ti[<i>κ</i><sup>2</sup>-<i>S</i>(CH)<sub>3</sub><i>C</i>H] (<b>2</b>). Complex <b>2</b> is photosensitive, and upon exposure to light, reductively eliminates thiophene to regenerate <b>1</b> – a rare example of early-metal mediated oxidative-addition/reductive-elimination chemistry. DFT calculations indicate strong titanium π-backdonation to the thiophene π*-orbitals leads to the observed thiophene ring opening across titanium, while a proposed photoinduced LMCT promotes the reverse thiophene elimination from <b>2</b>. Finally, pressurizing solutions of <b>2 </b>with H<sub>2</sub> (150 psi) at 80 °C leads to the hydrodesulfurization of thiophene to give the Ti(IV) sulfide (<sup>Ket</sup>guan)(Im<sup>Dipp</sup>N)Ti(S) (<b>3</b>) and butane. </p>


2020 ◽  
Author(s):  
Polla Rouf ◽  
Pitsiri Sukkaew ◽  
Lars Ojamäe ◽  
Henrik Pedersen

<p>Aluminium nitride (AlN) is a semiconductor with a wide range of applications from light emitting diodes to high frequency transistors. Electronic grade AlN is routinely deposited at 1000 °C by chemical vapour deposition (CVD) using trimethylaluminium (TMA) and NH<sub>3</sub> while low temperature CVD routes to high quality AlN are scarce and suffer from high levels of carbon impurities in the film. We report on an ALD-like CVD approach with time-resolved precursor supply where thermally induced desorption of methyl groups from the AlN surface is enhanced by the addition of an extra pulse, H<sub>2</sub>, N<sub>2</sub> or Ar between the TMA and NH<sub>3</sub> pulses. The enhanced desorption allowed deposition of AlN films with carbon content of 1 at. % at 480 °C. Kinetic- and quantum chemical modelling suggest that the extra pulse between TMA and NH<sub>3</sub> prevents re-adsorption of desorbing methyl groups terminating the AlN surface after the TMA pulse. </p>


2020 ◽  
Author(s):  
Haoyang Yu ◽  
Alyxandra Thiessen ◽  
Md Asjad Hossain ◽  
Marc Julian Kloberg ◽  
Bernhard Rieger ◽  
...  

<div><div><div><p>Covalently bonded organic monolayers play important roles in defining the solution processability, ambient stability, and electronic properties of two-dimensional (2D) materials such as Ge nanosheets (GeNSs); they also hold promise of providing avenues for the fabrication of future generation electronic and optical devices. Functionalization of GeNS normally involves surface moieties linked through covalent Ge−C bonds. In the present contribution we extend the scope of surface linkages to include Si−Ge bonding and present the first demonstration of heteronuclear dehydrocoupling of organosilanes to hydride-terminated GeNSs obtained from the deintercalation and exfoliation of CaGe2. We further exploit this new surface reactivity and demonstrated the preparation of directly bonded silicon quantum dot-Ge nanosheet hybrids.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document