scholarly journals Fresh and Hardened Properties of High Calcium Fly Ash-Based Geopolymer Matrix with High Dosage of Borax

Author(s):  
Antoni Antoni ◽  
Austin A. T. Purwantoro ◽  
Widya S. P. D. Suyanto ◽  
Djwantoro Hardjito
2022 ◽  
Vol 1048 ◽  
pp. 412-419
Author(s):  
B. Vijaya Prasad ◽  
Arun P. Kumar ◽  
N. Anand ◽  
Paul Daniel Arumairaj ◽  
T. Dhilip ◽  
...  

The most important cause of the climate changes in the past few decades are due to the emission of CO2.It may be due to human or natural processes such as disposal of waste material from the thermal power plant, consuming natural resources or production of cement etc. Due to increase in infrastructure created the demand of more construction industries. Increasing importance of environmental protection and energy storage has led to the investigation of alternative binders to replace the cement. Geopolymers are an alternative binder for cement concrete production because of their superior mechanical properties. In the present investigation, for developing the Geopolymer concrete (GPC), high calcium fly ash is used as an alternative binder with Na2SiO3 and NaOH as alkaline liquids. Fresh and hardened properties of GPC are examined by appropriate experiments. Alkaline liquid to High calcium Fly ash ratio (AL: HCF) of 0.45, 0.55,0.6 and 0.65 are used with 8M of NaOH and the developed GPC is kept in ambient curing for 7 days, 28 days, and 56 days. It was observed that with an increase of AL to HCF ratio in the fresh GPC increased the workability of GPC. Increase of AL to HCF ratio in GPC mix increased the compressive strength, tensile strength and flexural strength up to a certain limit.


2017 ◽  
Vol 733 ◽  
pp. 76-79 ◽  
Author(s):  
Ahmad B. Malkawi ◽  
Mohd Fadhil Nuruddin ◽  
Amir Fauzi ◽  
Hashem Al-Mattarneh ◽  
Bashar S. Mohammed

In this study, different types of plasticizers were used to investigate their effects on the fresh and hardened properties of high calcium fly ash geopolymers (HCFA). Modified polycarboxylate polymers (G3) and lignin-based polymers (G1) were used as plasticizing admixtures and the results were compared to the effect of tap water addition. The results showed that all the admixtures used are effective in increasing the workability of the HCFA geopolymers mixtures and the workability increased by 25-48% compared to the control mixtures. However, the use of G3 has adversely affected the strength by a reduction of 20%. While the use of G1 reduced the final setting time by 7% which is critical in the case of HCFA geopolymers where the final setting time occurs within 70 minutes. Water can be considered as the best admixture in terms of cost, setting time, and effect on compressive strength and it can be used where medium workability enhancement is required.


2020 ◽  
Vol 241 ◽  
pp. 118143 ◽  
Author(s):  
Ampol Wongsa ◽  
Ronnakrit Kunthawatwong ◽  
Sakchai Naenudon ◽  
Vanchai Sata ◽  
Prinya Chindaprasirt

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 900
Author(s):  
Chamila Gunasekara ◽  
Peter Atzarakis ◽  
Weena Lokuge ◽  
David W. Law ◽  
Sujeeva Setunge

Despite extensive in-depth research into high calcium fly ash geopolymer concretes and a number of proposed methods to calculate the mix proportions, no universally applicable method to determine the mix proportions has been developed. This paper uses an artificial neural network (ANN) machine learning toolbox in a MATLAB programming environment together with a Bayesian regularization algorithm, the Levenberg-Marquardt algorithm and a scaled conjugate gradient algorithm to attain a specified target compressive strength at 28 days. The relationship between the four key parameters, namely water/solid ratio, alkaline activator/binder ratio, Na2SiO3/NaOH ratio and NaOH molarity, and the compressive strength of geopolymer concrete is determined. The geopolymer concrete mix proportions based on the ANN algorithm model and contour plots developed were experimentally validated. Thus, the proposed method can be used to determine mix designs for high calcium fly ash geopolymer concrete in the range 25–45 MPa at 28 days. In addition, the design equations developed using the statistical regression model provide an insight to predict tensile strength and elastic modulus for a given compressive strength.


2018 ◽  
Vol 20 (2) ◽  
pp. 51
Author(s):  
Antoni . ◽  
Hendra Surya Wibawa ◽  
Djwantoro Hardjito

This study evaluates the effect of particle size distribution (PSD) of high calcium fly ash on high volume fly ash (HVFA) mortar characteristics. Four PSD variations of high calcium fly ash used were: unclassified fly ash and fly ash passing sieve No. 200, No. 325 and No. 400, respectively. The fly ash replacement ratio of the cementitious material ranged between 50-70%. The results show that with smaller fly ash particles size and higher levels of fly ash replacement, the workability of the mixture was increased with longer setting time. There was an increase in mortar compressive strength with finer fly ash particle size, compared to those with unclassified ones, with the highest strength was found at those with fly ash passing mesh No. 325. The increase was found due to better compactability of the mixture. Higher fly ash replacement reduced the mortar’s compressive strength, however, the rate was reduced when finer fly ash particles was used.


2021 ◽  
Author(s):  
Giri Raj Adhikari

Blended cements were studied for their efficacy against sulphate attack and alkali-silica reaction using six different types of fly ashes, a slag, a silica fume and four types of General Use Portland cement of different alkalinity. The study results showed that low calcium fly ash, silica fume and ground granulated blast furnace slag enhanced the sulphate resistance of cement with increased efficacy with the increase in the replacement level. However, slag and silica fume, especially at low replacement levels, exhibited increased rate of expansion beyond the age of 78 weeks. On the contrary, high calcium fly ashes showed reduced resistance to sulphate attack with no clear trend between the replacement level and expansion. Ternary blends consisting of silica fume, particulary in the amount of 5%, high calcium fly ashes and General Use (GU) cement provided high sulphate resistance, which was attributable to reduced permeability. In the same way, some of ternary blends consisting of slag, high calcium fly ash and GU cement improved sulphate resistance. Pre-blending optimum amount of gypsum with high calcium fly ash enhanced the latter's resistance to sulphate attack by producing more ettringite at the early stage of hydration. In the context of alkali-silica reaction permeability was found to be a contributing factor to the results of the accelerated mortar bar test. High-alkali, high-calcium fly ash was found to worsen the alkali silica reaction when used in concrete containing some reactive aggregates. Ternary blend of slag with high calcium fly ash was found to produce promising results in terms of counteracting alkali-silica reaction.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7109
Author(s):  
Wei Yang ◽  
Pinghua Zhu ◽  
Hui Liu ◽  
Xinjie Wang ◽  
Wei Ge ◽  
...  

Geopolymer binder is expected to be an optimum alternative to Portland cement due to its excellent engineering properties of high strength, acid corrosion resistance, low permeability, good chemical resistance, and excellent fire resistance. To study the sulfuric acid corrosion resistance of geopolymer concrete (GPC) with different binding materials and concentrations of sodium hydroxide solution (NaOH), metakaolin, high-calcium fly ash, and low-calcium fly ash were chosen as binding materials of GPC for the geopolymerization process. A mixture of sodium silicate solution (Na2SiO3) and NaOH solution with different concentrations (8 M and 12 M) was selected as the alkaline activator with a ratio (Na2SiO3/NaOH) of 1.5. GPC specimens were immersed in the sulfuric acid solution with the pH value of 1 for 6 days and then naturally dried for 1 day until 98 days. The macroscopic properties of GPC were characterized by visual appearance, compressive strength, mass loss, and neutralization depth. The materials were characterized by SEM, XRD, and FTIR. The results indicated that at the immersion time of 28 d, the compressive strength of two types of fly ash-based GPC increased to some extent due to the presence of gypsum, but this phenomenon was not observed in metakaolin-based GPC. After 98 d of immersion, the residual strength of fly ash based GPC was still higher, which reached more than 25 MPa, while the metakaolin-based GPC failed. Furthermore, due to the rigid 3D networks of aluminosilicate in fly ash-based GPC, the mass of all GPC decreased slightly during the immersion period, and then tended to be stable in the later period. On the contrary, in metakaolin-based GPC, the incomplete geopolymerization led to the compressive strength being too low to meet the application of practical engineering. In addition, the compressive strength of GPC activated by 12 M NaOH was higher than the GPC activated by 8 M NaOH, which is owing to the formation of gel depended on the concentration of alkali OH ion, low NaOH concentration weakened chemical reaction, and reduced compressive strength. Additionally, according to the testing results of neutralization depth, the neutralization depth of high-calcium fly ash-based GPC activated by 12 M NaOH suffered acid attack for 98 d was only 6.9 mm, which is the minimum value. Therefore, the best performance was observed in GPC prepared with high-calcium fly ash and 12 M NaOH solution, which is attributed to gypsum crystals that block the pores of the specimen and improve the microstructure of GPC, inhibiting further corrosion of sulfuric acid.


Sign in / Sign up

Export Citation Format

Share Document