scholarly journals Resistance to Sulfuric Acid Corrosion of Geopolymer Concrete Based on Different Binding Materials and Alkali Concentrations

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7109
Author(s):  
Wei Yang ◽  
Pinghua Zhu ◽  
Hui Liu ◽  
Xinjie Wang ◽  
Wei Ge ◽  
...  

Geopolymer binder is expected to be an optimum alternative to Portland cement due to its excellent engineering properties of high strength, acid corrosion resistance, low permeability, good chemical resistance, and excellent fire resistance. To study the sulfuric acid corrosion resistance of geopolymer concrete (GPC) with different binding materials and concentrations of sodium hydroxide solution (NaOH), metakaolin, high-calcium fly ash, and low-calcium fly ash were chosen as binding materials of GPC for the geopolymerization process. A mixture of sodium silicate solution (Na2SiO3) and NaOH solution with different concentrations (8 M and 12 M) was selected as the alkaline activator with a ratio (Na2SiO3/NaOH) of 1.5. GPC specimens were immersed in the sulfuric acid solution with the pH value of 1 for 6 days and then naturally dried for 1 day until 98 days. The macroscopic properties of GPC were characterized by visual appearance, compressive strength, mass loss, and neutralization depth. The materials were characterized by SEM, XRD, and FTIR. The results indicated that at the immersion time of 28 d, the compressive strength of two types of fly ash-based GPC increased to some extent due to the presence of gypsum, but this phenomenon was not observed in metakaolin-based GPC. After 98 d of immersion, the residual strength of fly ash based GPC was still higher, which reached more than 25 MPa, while the metakaolin-based GPC failed. Furthermore, due to the rigid 3D networks of aluminosilicate in fly ash-based GPC, the mass of all GPC decreased slightly during the immersion period, and then tended to be stable in the later period. On the contrary, in metakaolin-based GPC, the incomplete geopolymerization led to the compressive strength being too low to meet the application of practical engineering. In addition, the compressive strength of GPC activated by 12 M NaOH was higher than the GPC activated by 8 M NaOH, which is owing to the formation of gel depended on the concentration of alkali OH ion, low NaOH concentration weakened chemical reaction, and reduced compressive strength. Additionally, according to the testing results of neutralization depth, the neutralization depth of high-calcium fly ash-based GPC activated by 12 M NaOH suffered acid attack for 98 d was only 6.9 mm, which is the minimum value. Therefore, the best performance was observed in GPC prepared with high-calcium fly ash and 12 M NaOH solution, which is attributed to gypsum crystals that block the pores of the specimen and improve the microstructure of GPC, inhibiting further corrosion of sulfuric acid.

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 900
Author(s):  
Chamila Gunasekara ◽  
Peter Atzarakis ◽  
Weena Lokuge ◽  
David W. Law ◽  
Sujeeva Setunge

Despite extensive in-depth research into high calcium fly ash geopolymer concretes and a number of proposed methods to calculate the mix proportions, no universally applicable method to determine the mix proportions has been developed. This paper uses an artificial neural network (ANN) machine learning toolbox in a MATLAB programming environment together with a Bayesian regularization algorithm, the Levenberg-Marquardt algorithm and a scaled conjugate gradient algorithm to attain a specified target compressive strength at 28 days. The relationship between the four key parameters, namely water/solid ratio, alkaline activator/binder ratio, Na2SiO3/NaOH ratio and NaOH molarity, and the compressive strength of geopolymer concrete is determined. The geopolymer concrete mix proportions based on the ANN algorithm model and contour plots developed were experimentally validated. Thus, the proposed method can be used to determine mix designs for high calcium fly ash geopolymer concrete in the range 25–45 MPa at 28 days. In addition, the design equations developed using the statistical regression model provide an insight to predict tensile strength and elastic modulus for a given compressive strength.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2441 ◽  
Author(s):  
Yinong Shen ◽  
Bo Liu ◽  
Jianfu Lv ◽  
Manlin Shen

A novel polymer concrete (PC) using an aggregate of ceramsite, fly ash and glass fiber was created. Specimens were used in experiments to investigate its anticorrosion properties to determine the viability of its use in flue gas desulfurization (FGD) stacks. The inclusion of ceramsite reduces both the weight and the cost of the material. The effects of ceramsite and glass fiber on the flexural strength and compressive strength of the concrete were investigated. The experimental results showed that ceramsite reduces the flexural strength and the compressive strength of the concrete, but that the glass fiber increases both. Surface resistance to sulfuric acid corrosion and the microstructure of the corroded concrete were investigated. Specimens of the novel PC and the control PC strongly resisted acid corrosion. Although the specimen surfaces deteriorated, the interior structure of the PC was unaffected after 50 days of acid immersion. Processes by which sulfuric acid corrodes PC surfaces were determined.


2016 ◽  
Vol 718 ◽  
pp. 163-168 ◽  
Author(s):  
Tawatchai Tho-In ◽  
Vanchai Sata ◽  
Trinh Cao ◽  
Prinya Chindaprasirt

The comparison results of using crushed limestone (NA) and recycled concrete aggregates (RCA) as coarse aggregates in high-calcium fly ash geopolymer concrete with and without temperature curing are presented. Local river sand with a fineness modulus of 2.1, sodium hydroxide solution concentrations of 8, 12, and 16 Molar, and sodium silicate were used to produce geopolymer concrete (GC). The curing was separated in two conditions: the first was cured at ambient temperature (AT) and another was cured at temperature of 60°C for 48 hrs. (CT). The compressive strength, thermal conductivity, and ultra pulse velocity of GC were investigated at age 7 days. The results found that RCA could be use as coarse aggregate in GC. The thermal conductivity increased with the increasing of compressive strength. Curing at 60°C yielded compressive strength about 3 times higher than that of AT. However, both AT and CT curing, GC containing RCA had thermal conductivity and ultra pulse velocity lower than those of containing NA.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012184
Author(s):  
B Vijaya Prasad ◽  
N Anand ◽  
P D Arumairaj ◽  
M Sanath Kumar ◽  
T Dhilip ◽  
...  

Abstract Geopolymer concrete (GPC) is a Sustainable construction material, in which cement is completely replaced by Fly ash as binder. To control emission of CO2 during the production of cement, it is advisable to use alternate sustainable Cementitious material. The development of GPC become a major interest to use for in-situ and precast applications. The present study aims to develop High calcium fly ash based GPC with aid of alkaline liquids such as sodium Hydroxide (NaOH) and Sodium silicate (Na2SiO3). Different molarities i.e 4M, 6M, 8M and 10M are used to develop the GPC under ambient and oven curing process. In the present investigation the Fresh properties of GPC and Mechanical properties such as compressive strength, Tensile strength, Flexural strength and Elastic modulus of GPC are investigated. An increase of alkaline activator in in the mix decreased the workability of GPC. The developed GPC mix of 8M is found to be the optimum for gain in compressive strength. A polynomial relationship is obtained for the mechanical properties of GPC developed under ambient and oven curing. The development cost of GPC can be reduced up to 11.25 to 16.5% as compared with conventional concrete grade of M25.


2018 ◽  
Vol 20 (2) ◽  
pp. 51
Author(s):  
Antoni . ◽  
Hendra Surya Wibawa ◽  
Djwantoro Hardjito

This study evaluates the effect of particle size distribution (PSD) of high calcium fly ash on high volume fly ash (HVFA) mortar characteristics. Four PSD variations of high calcium fly ash used were: unclassified fly ash and fly ash passing sieve No. 200, No. 325 and No. 400, respectively. The fly ash replacement ratio of the cementitious material ranged between 50-70%. The results show that with smaller fly ash particles size and higher levels of fly ash replacement, the workability of the mixture was increased with longer setting time. There was an increase in mortar compressive strength with finer fly ash particle size, compared to those with unclassified ones, with the highest strength was found at those with fly ash passing mesh No. 325. The increase was found due to better compactability of the mixture. Higher fly ash replacement reduced the mortar’s compressive strength, however, the rate was reduced when finer fly ash particles was used.


2018 ◽  
Vol 158 ◽  
pp. 33-41 ◽  
Author(s):  
Yu Yang ◽  
Tao Ji ◽  
Xujian Lin ◽  
Caiyi Chen ◽  
Zhengxian Yang

Sign in / Sign up

Export Citation Format

Share Document