scholarly journals AGTR: Adversarial Generation of Target Review for Rating Prediction

2020 ◽  
Vol 5 (4) ◽  
pp. 346-359
Author(s):  
Huilin Yu ◽  
Tieyun Qian ◽  
Yile Liang ◽  
Bing Liu

Abstract Recent years have witnessed a growing trend of utilizing reviews to improve the performance and interpretability of recommender systems. Almost all existing methods learn the latent representations from the user’s and the item’s historical reviews and then combine these two representations for rating prediction. The fatal limitation in these methods is that they are unable to utilize the most predictive review of the target user for the target item since such a review is not available at test time. In this paper, we propose a novel recommendation model, called AGTR, which can generate the unseen target review with adversarial training for rating prediction. To this end, we develop a unified framework to combine the rating tailored generative adversarial nets for synthetic review generation and the neural latent factor module using the generated target review along with historical reviews for rating prediction. Extensive experiments on four real-world datasets demonstrate that our model achieves the state-of-the-art performance in both rating prediction and review generation tasks.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jinpeng Chen ◽  
Wen Zhang ◽  
Pei Zhang ◽  
Pinguang Ying ◽  
Kun Niu ◽  
...  

An increasing number of users have been attracted by location-based social networks (LBSNs) in recent years. Meanwhile, user-generated content in online LBSNs like spatial, temporal, and social information provides an ever-increasing chance to study the human behavior movement from their spatiotemporal mobility patterns and spawns a large number of location-based applications. For instance, one of such applications is to produce personalized point of interest (POI) recommendations that users are interested in. Different from traditional recommendation methods, the recommendations in LBSNs come with two vital dimensions, namely, geographical and temporal. However, previously proposed methods do not adequately explore geographical influence and temporal influence. Therefore, fusing geographical and temporal influences for better recommendation accuracy in LBSNs remains potential. In this work, our aim is to generate a top recommendation list of POIs for a target user. Specially, we explore how to produce the POI recommendation by leveraging spatiotemporal information. In order to exploit both geographical and temporal influences, we first design a probabilistic method to initially detect users’ spatial orientation by analyzing visibility weights of POIs which are visited by them. Second, we perform collaborative filtering by detecting users’ temporal preferences. At last, for making the POI recommendation, we combine the aforementioned two approaches, that is, integrating the spatial and temporal influences, to construct a unified framework. Our experimental results on two real-world datasets indicate that our proposed method outperforms the current state-of-the-art POI recommendation approaches.


Author(s):  
Zhaoyang Li ◽  
Qianqian Wang ◽  
Zhiqiang Tao ◽  
Quanxue Gao ◽  
Zhaohua Yang

Multi-view clustering has attracted increasing attention in recent years by exploiting common clustering structure across multiple views. Most existing multi-view clustering algorithms use shallow and linear embedding functions to learn the common structure of multi-view data. However, these methods cannot fully utilize the non-linear property of multi-view data, which is important to reveal complex cluster structure underlying multi-view data. In this paper, we propose a novel multi-view clustering method, named Deep Adversarial Multi-view Clustering (DAMC) network, to learn the intrinsic structure embedded in multi-view data. Specifically, our model adopts deep auto-encoders to learn latent representations shared by multiple views, and meanwhile leverages adversarial training to further capture the data distribution and disentangle the latent space. Experimental results on several real-world datasets demonstrate that the proposed method outperforms the state-of art methods.


Author(s):  
Shengsheng Qian ◽  
Jun Hu ◽  
Quan Fang ◽  
Changsheng Xu

In this article, we focus on fake news detection task and aim to automatically identify the fake news from vast amount of social media posts. To date, many approaches have been proposed to detect fake news, which includes traditional learning methods and deep learning-based models. However, there are three existing challenges: (i) How to represent social media posts effectively, since the post content is various and highly complicated; (ii) how to propose a data-driven method to increase the flexibility of the model to deal with the samples in different contexts and news backgrounds; and (iii) how to fully utilize the additional auxiliary information (the background knowledge and multi-modal information) of posts for better representation learning. To tackle the above challenges, we propose a novel Knowledge-aware Multi-modal Adaptive Graph Convolutional Networks (KMAGCN) to capture the semantic representations by jointly modeling the textual information, knowledge concepts, and visual information into a unified framework for fake news detection. We model posts as graphs and use a knowledge-aware multi-modal adaptive graph learning principal for the effective feature learning. Compared with existing methods, the proposed KMAGCN addresses challenges from three aspects: (1) It models posts as graphs to capture the non-consecutive and long-range semantic relations; (2) it proposes a novel adaptive graph convolutional network to handle the variability of graph data; and (3) it leverages textual information, knowledge concepts and visual information jointly for model learning. We have conducted extensive experiments on three public real-world datasets and superior results demonstrate the effectiveness of KMAGCN compared with other state-of-the-art algorithms.


2020 ◽  
Vol 34 (05) ◽  
pp. 9410-9417
Author(s):  
Min Yang ◽  
Chengming Li ◽  
Fei Sun ◽  
Zhou Zhao ◽  
Ying Shen ◽  
...  

Real-time event summarization is an essential task in natural language processing and information retrieval areas. Despite the progress of previous work, generating relevant, non-redundant, and timely event summaries remains challenging in practice. In this paper, we propose a Deep Reinforcement learning framework for real-time Event Summarization (DRES), which shows promising performance for resolving all three challenges (i.e., relevance, non-redundancy, timeliness) in a unified framework. Specifically, we (i) devise a hierarchical cross-attention network with intra- and inter-document attentions to integrate important semantic features within and between the query and input document for better text matching. In addition, relevance prediction is leveraged as an auxiliary task to strengthen the document modeling and help to extract relevant documents; (ii) propose a multi-topic dynamic memory network to capture the sequential patterns of different topics belonging to the event of interest and temporally memorize the input facts from the evolving document stream, avoiding extracting redundant information at each time step; (iii) consider both historical dependencies and future uncertainty of the document stream for generating relevant and timely summaries by exploiting the reinforcement learning technique. Experimental results on two real-world datasets have demonstrated the advantages of DRES model with significant improvement in generating relevant, non-redundant, and timely event summaries against the state-of-the-arts.


2020 ◽  
Vol 34 (04) ◽  
pp. 5956-5963
Author(s):  
Xianfeng Tang ◽  
Huaxiu Yao ◽  
Yiwei Sun ◽  
Charu Aggarwal ◽  
Prasenjit Mitra ◽  
...  

Multivariate time series (MTS) forecasting is widely used in various domains, such as meteorology and traffic. Due to limitations on data collection, transmission, and storage, real-world MTS data usually contains missing values, making it infeasible to apply existing MTS forecasting models such as linear regression and recurrent neural networks. Though many efforts have been devoted to this problem, most of them solely rely on local dependencies for imputing missing values, which ignores global temporal dynamics. Local dependencies/patterns would become less useful when the missing ratio is high, or the data have consecutive missing values; while exploring global patterns can alleviate such problem. Thus, jointly modeling local and global temporal dynamics is very promising for MTS forecasting with missing values. However, work in this direction is rather limited. Therefore, we study a novel problem of MTS forecasting with missing values by jointly exploring local and global temporal dynamics. We propose a new framework øurs, which leverages memory network to explore global patterns given estimations from local perspectives. We further introduce adversarial training to enhance the modeling of global temporal distribution. Experimental results on real-world datasets show the effectiveness of øurs for MTS forecasting with missing values and its robustness under various missing ratios.


Author(s):  
Chenghao Liu ◽  
Xin Wang ◽  
Tao Lu ◽  
Wenwu Zhu ◽  
Jianling Sun ◽  
...  

Social recommendation, which aims at improving the performance of traditional recommender systems by considering social information, has attracted broad range of interests. As one of the most widely used methods, matrix factorization typically uses continuous vectors to represent user/item latent features. However, the large volume of user/item latent features results in expensive storage and computation cost, particularly on terminal user devices where the computation resource to operate model is very limited. Thus when taking extra social information into account, precisely extracting K most relevant items for a given user from massive candidates tends to consume even more time and memory, which imposes formidable challenges for efficient and accurate recommendations. A promising way is to simply binarize the latent features (obtained in the training phase) and then compute the relevance score through Hamming distance. However, such a two-stage hashing based learning procedure is not capable of preserving the original data geometry in the real-value space and may result in a severe quantization loss. To address these issues, this work proposes a novel discrete social recommendation (DSR) method which learns binary codes in a unified framework for users and items, considering social information. We further put the balanced and uncorrelated constraints on the objective to ensure the learned binary codes can be informative yet compact, and finally develop an efficient optimization algorithm to estimate the model parameters. Extensive experiments on three real-world datasets demonstrate that DSR runs nearly 5 times faster and consumes only with 1/37 of its real-value competitor’s memory usage at the cost of almost no loss in accuracy.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5755
Author(s):  
Pei Zhang ◽  
Siwei Wang ◽  
Jingtao Hu ◽  
Zhen Cheng ◽  
Xifeng Guo ◽  
...  

With the enormous amount of multi-source data produced by various sensors and feature extraction approaches, multi-view clustering (MVC) has attracted developing research attention and is widely exploited in data analysis. Most of the existing multi-view clustering methods hold on the assumption that all of the views are complete. However, in many real scenarios, multi-view data are often incomplete for many reasons, e.g., hardware failure or incomplete data collection. In this paper, we propose an adaptive weighted graph fusion incomplete multi-view subspace clustering (AWGF-IMSC) method to solve the incomplete multi-view clustering problem. Firstly, to eliminate the noise existing in the original space, we transform complete original data into latent representations which contribute to better graph construction for each view. Then, we incorporate feature extraction and incomplete graph fusion into a unified framework, whereas two processes can negotiate with each other, serving for graph learning tasks. A sparse regularization is imposed on the complete graph to make it more robust to the view-inconsistency. Besides, the importance of different views is automatically learned, further guiding the construction of the complete graph. An effective iterative algorithm is proposed to solve the resulting optimization problem with convergence. Compared with the existing state-of-the-art methods, the experiment results on several real-world datasets demonstrate the effectiveness and advancement of our proposed method.


2020 ◽  
Vol 31 (4) ◽  
pp. 24-45
Author(s):  
Mengmeng Shen ◽  
Jun Wang ◽  
Ou Liu ◽  
Haiying Wang

Tags generated in collaborative tagging systems (CTSs) may help users describe, categorize, search, discover, and navigate content, whereas the difficulty is how to go beyond the information explosion and obtain experts and the required information quickly and accurately. This paper proposes an expert detection and recommendation (EDAR) model based on semantics of tags; the framework consists of community detection and EDAR. Specifically, this paper firstly mines communities based on an improved agglomerative hierarchical clustering (I-AHC) to cluster tags and then presents a community expert detection (CED) algorithm for identifying community experts, and finally, an expert recommendation algorithm is proposed based the improved collaborative filtering (CF) algorithm to recommend relevant experts for the target user. Experiments are carried out on real world datasets, and the results from data experiments and user evaluations have shown that the proposed model can provide excellent performance compared to the benchmark method.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8966 ◽  
Author(s):  
Kexue Li ◽  
Yakang Lu ◽  
Li Deng ◽  
Lili Wang ◽  
Lizhen Shi ◽  
...  

Metagenome assembly from short next-generation sequencing data is a challenging process due to its large scale and computational complexity. Clustering short reads by species before assembly offers a unique opportunity for parallel downstream assembly of genomes with individualized optimization. However, current read clustering methods suffer either false negative (under-clustering) or false positive (over-clustering) problems. Here we extended our previous read clustering software, SpaRC, by exploiting statistics derived from multiple samples in a dataset to reduce the under-clustering problem. Using synthetic and real-world datasets we demonstrated that this method has the potential to cluster almost all of the short reads from genomes with sufficient sequencing coverage. The improved read clustering in turn leads to improved downstream genome assembly quality.


Author(s):  
Guolei Yang ◽  
Ying Cai ◽  
Chandan K Reddy

We introduce a novel check-in time prediction problem. The goal is to predict the time a user will check-in to a given location. We formulate check-in prediction as a survival analysis problem and propose a Recurrent-Censored Regression (RCR) model. We address the key challenge of check-in data scarcity, which is due to the uneven distribution of check-ins among users/locations. Our idea is to enrich the check-in data with potential visitors, i.e., users who have not visited the location before but are likely to do so. RCR uses recurrent neural network to learn latent representations from historical check-ins of both actual and potential visitors, which is then incorporated with censored regression to make predictions. Experiments show RCR outperforms state-of-the-art event time prediction techniques on real-world datasets.


Sign in / Sign up

Export Citation Format

Share Document