Use of Rejuvenator, Styrene-Butadiene Rubber Latex, and Warm-Mix Asphalt Technology to Achieve Conventional Mixture Performance with 50% Reclaimed Asphalt Pavement

2016 ◽  
Vol 2575 (1) ◽  
pp. 160-167 ◽  
Author(s):  
Zhou Zhou ◽  
Xingyu Gu ◽  
Qiang Li ◽  
Fujian Ni ◽  
Rui Yuan
Author(s):  
Anping Wang ◽  
Shihui Shen

Reclaimed asphalt pavement (RAP) has been used in micro-surfacing mixtures with good promise and improved sustainability. However, no systematic study has been conducted to analyze the chemical components of the RAP micro-surfacing mixture when blending virgin binder with RAP binder, and to confirm the reasonableness of using RAP micro-surfacing mixtures. Based on a gap-graded method, this paper explored the chemical properties of RAP micro-surfacing mixtures using attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR) and fluorescence microscopy, and explained the blending mechanism between the RAP and the cold mixture. The blending efficiency and effective styrene butadiene rubber (SBR) concentration were quantified based on various chemical component parameters. The results showed that partial blending existed for RAP micro-surfacing mixtures. It was found that the diffusion happened from the outer layer of the RAP mixture as a result of the coating of emulsion, and could continuously and gradually happen for the RAP mixture, giving higher blending efficiency for a high RAP content mixture. The addition of RAP makes SBR particles more dispersible. Including rejuvenators and increasing curing time could improve the blending efficiency and the effective modifier concentration.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Mohammad Ashiqur Rahman ◽  
Rouzbeh Ghabchi ◽  
Musharraf Zaman ◽  
Syed Ashik Ali

AbstractDespite significant economic and environmental benefits, performance of warm mix asphalt (WMA) containing reclaimed asphalt pavement (RAP) remains a matter of concern. Among the current WMA technologies, the plant foaming technique (called “foamed WMA” in this study) has gained the most attention, since it eliminates the need for chemical additives. In the present study, the laboratory performance, namely rutting and moisture-induced damage potential of foamed WMA containing RAP were evaluated and compared with those of similar hot mix asphalt (HMA) containing identical amount of RAP. Dynamic modulus, Hamburg wheel tracking (HWT) and flow number tests were performed to assess the rutting resistance of the mixes. Also, stripping inflection point from HWT tests and tensile strength ratio after AASHTO T 283 and moisture induced sensitivity test (MIST) conditioning were used to evaluate the moisture-induced damage of asphalt mixes. It was found that MIST conditioning effectively simulates the moisture-induced damage and can capture the propensity of asphalt mixes to moisture damage more distinctly compared to AASHTO T 283 method due to application of cyclic loadings. The foamed WMA was found to exhibit higher rutting and moisture-induced damage potential due to lower mixing and compaction temperatures compared to HMA. However, the increase in RAP content was found to reduce rutting and moisture-induced damage potential for WMA. Therefore, the lower stiffness of foamed WMA may be compensated with the addition of stiffer binder from RAP.


2003 ◽  
Vol 76 (7) ◽  
pp. 234-239 ◽  
Author(s):  
Kiyoshi SUNADA ◽  
Hiroki TAKESHITA ◽  
Masamitsu MIYA ◽  
Tsukasa NAKAMURA ◽  
Katsuhiko TAKENAKA ◽  
...  

2020 ◽  
Vol 12 (16) ◽  
pp. 6410
Author(s):  
Alejandra T. Calabi-Floody ◽  
Gonzalo A. Valdés-Vidal ◽  
Elsa Sanchez-Alonso ◽  
Luis A. Mardones-Parra

Asphalt mixture is the most widely used material in road construction, and the industry is developing more sustainable technologies. Warm mix asphalt (WMA) is a promising alternative as it saves energy, reduces fuel consumption and generates fewer gas and fume emissions, while maintaining a similar performance to hot mix asphalt (HMA). This paper presents an evaluation of the gas emissions at laboratory scale, as well as the energy consumption and production costs, of five types of WMA with the addition of natural zeolite. The control mixture was a HMA manufactured at 155 °C. The mixtures evaluated were two WMA manufactured at 135 °C with 0.3% and 0.6% natural zeolite, and three WMA with partial replacement of raw materials by 10%, 20% and 30% of reclaimed asphalt pavement (RAP); these mixtures, called WMA–RAP, were manufactured at 125 °C, 135 °C and 145 °C, respectively. The results indicated that all the mixtures evaluated reduced CO and CO2 emissions by 2–6% and 17–37%, respectively. The energy consumption presented a 13% decrease. In the current situation, the production costs for WMA with 0.3 and 0.6% natural zeolite are slightly higher than the control mixture, because the saving achieved in fuel consumption is lower than the current cost of the additive. On the other hand, WMA manufactured with the addition of natural zeolite and RAP could produce cost savings of up to 25%, depending on the amounts of RAP and natural zeolite used.


Author(s):  
Walaa S. Mogawer ◽  
Alexander J. Austerman ◽  
Robert Kluttz ◽  
Michael Roussel

A high-performance thin asphalt overlay (HPThinOL) is specified as having a thickness of 1 in. or less and is used in applications requiring high levels of rutting and fatigue resistance. HPThinOLs are used as a pavement preservation strategy and are placed on pavements that have remaining structural capacity that is expected to outlive that strategy. Current specifications for HPThinOLs generally call for a polymer-modified asphalt (PMA). However, PMA binders are more expensive than unmodified asphalt binders. This expense, coupled with the higher binder content requirement generally associated with HPThinOL, could lead to an initial higher cost in relation to other pavement preservation strategies. Although the higher initial cost can be offset by incorporating high amounts of reclaimed asphalt pavement (RAP), the use of high amounts of RAP in PMA mixtures might adversely affect the mixture performance (stiffness, cracking, or workability). Warm-mix asphalt (WMA) technology may improve the workability of HPThinOL that incorporates high RAP content and PMA binders. This study evaluated the effect of PMA binders, high RAP content, and WMA technology on the stiffness, resistance to reflective cracking, moisture susceptibility, and workability of HPThinOL mixtures. PMA binders and high RAP content increased the stiffness of HPThinOL significantly; however, the use of WMA technology lowered mixture stiffness and improved workability. PMA may improve the cracking resistance, moisture susceptibility, and rutting resistance of high-RAP HPThinOL mixtures, depending on whether a WMA technology is used.


Sign in / Sign up

Export Citation Format

Share Document