scholarly journals Movienet: a movie multilayer network model using visual and textual semantic cues

2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Youssef Mourchid ◽  
Benjamin Renoust ◽  
Olivier Roupin ◽  
Lê Văn ◽  
Hocine Cherifi ◽  
...  

AbstractDiscovering content and stories in movies is one of the most important concepts in multimedia content research studies. Network models have proven to be an efficient choice for this purpose. When an audience watches a movie, they usually compare the characters and the relationships between them. For this reason, most of the modelsdeveloped so far are based on social networks analysis. They focus essentially on the characters at play. By analyzing characters interactions, we can obtain a broad picture of the narration’s content. Other works have proposed to exploit semantic elements such as scenes, dialogues, etc.. However, they are always captured from a single facet. Motivated by these limitations, we introduce in this work a multilayer network model to capture the narration of a movie based on its script, its subtitles, and the movie content. After introducing the model and the extraction process from the raw data, weperform a comparative analysis of the whole 6-movie cycle of the Star Wars saga. Results demonstrate the effectiveness of the proposed framework for video content representation and analysis.

2019 ◽  
Author(s):  
M.E. Schroeder ◽  
D. S. Bassett ◽  
D. F. Meaney

AbstractDespite recent advances in understanding neuron-astrocyte signaling, little is known about astrocytic modulation of neuronal activity at the population level, particularly in disease or following injury. We used high-speed calcium imaging of mixed cortical cultures in vitro to determine how population activity changes after disruption of signaling and mechanical injury. We constructed a multilayer network model of neuron-astrocyte connectivity, which captured unique topology and response behavior not evident from analysis of single cell type networks. mGluR5 inhibition decreased neuronal, but not astrocytic, activity and functional connectivity following traumatic injury, and also altered higher-order topological properties of multilayer networks. Comparison of spatial and functional community structure revealed that astrocyte segments of the same cell often belong to separate functional communities based on neural connectivity. Our findings demonstrate the utility of multilayer network models for characterizing the multiscale connectivity of two distinct but functionally dependent cell populations.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 450
Author(s):  
Gergely Honti ◽  
János Abonyi

Triplestores or resource description framework (RDF) stores are purpose-built databases used to organise, store and share data with context. Knowledge extraction from a large amount of interconnected data requires effective tools and methods to address the complexity and the underlying structure of semantic information. We propose a method that generates an interpretable multilayered network from an RDF database. The method utilises frequent itemset mining (FIM) of the subjects, predicates and the objects of the RDF data, and automatically extracts informative subsets of the database for the analysis. The results are used to form layers in an analysable multidimensional network. The methodology enables a consistent, transparent, multi-aspect-oriented knowledge extraction from the linked dataset. To demonstrate the usability and effectiveness of the methodology, we analyse how the science of sustainability and climate change are structured using the Microsoft Academic Knowledge Graph. In the case study, the FIM forms networks of disciplines to reveal the significant interdisciplinary science communities in sustainability and climate change. The constructed multilayer network then enables an analysis of the significant disciplines and interdisciplinary scientific areas. To demonstrate the proposed knowledge extraction process, we search for interdisciplinary science communities and then measure and rank their multidisciplinary effects. The analysis identifies discipline similarities, pinpointing the similarity between atmospheric science and meteorology as well as between geomorphology and oceanography. The results confirm that frequent itemset mining provides an informative sampled subsets of RDF databases which can be simultaneously analysed as layers of a multilayer network.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naomi A. Arnold ◽  
Raul J. Mondragón ◽  
Richard G. Clegg

AbstractDiscriminating between competing explanatory models as to which is more likely responsible for the growth of a network is a problem of fundamental importance for network science. The rules governing this growth are attributed to mechanisms such as preferential attachment and triangle closure, with a wealth of explanatory models based on these. These models are deliberately simple, commonly with the network growing according to a constant mechanism for its lifetime, to allow for analytical results. We use a likelihood-based framework on artificial data where the network model changes at a known point in time and demonstrate that we can recover the change point from analysis of the network. We then use real datasets and demonstrate how our framework can show the changing importance of network growth mechanisms over time.


2012 ◽  
Vol 26 (4) ◽  
pp. 444-445 ◽  
Author(s):  
Tobias Rothmund ◽  
Anna Baumert ◽  
Manfred Schmitt

We argue that replacing the trait model with the network model proposed in the target article would be immature for three reasons. (i) If properly specified and grounded in substantive theories, the classic state–trait model provides a flexible framework for the description and explanation of person × situation transactions. (ii) Without additional substantive theories, the network model cannot guide the identification of personality components. (iii) Without assumptions about psychological processes that account for causal links among personality components, the concept of equilibrium has merely descriptive value and lacks explanatory power. Copyright © 2012 John Wiley & Sons, Ltd.


2011 ◽  
Vol 105 (2) ◽  
pp. 757-778 ◽  
Author(s):  
Malte J. Rasch ◽  
Klaus Schuch ◽  
Nikos K. Logothetis ◽  
Wolfgang Maass

A major goal of computational neuroscience is the creation of computer models for cortical areas whose response to sensory stimuli resembles that of cortical areas in vivo in important aspects. It is seldom considered whether the simulated spiking activity is realistic (in a statistical sense) in response to natural stimuli. Because certain statistical properties of spike responses were suggested to facilitate computations in the cortex, acquiring a realistic firing regimen in cortical network models might be a prerequisite for analyzing their computational functions. We present a characterization and comparison of the statistical response properties of the primary visual cortex (V1) in vivo and in silico in response to natural stimuli. We recorded from multiple electrodes in area V1 of 4 macaque monkeys and developed a large state-of-the-art network model for a 5 × 5-mm patch of V1 composed of 35,000 neurons and 3.9 million synapses that integrates previously published anatomical and physiological details. By quantitative comparison of the model response to the “statistical fingerprint” of responses in vivo, we find that our model for a patch of V1 responds to the same movie in a way which matches the statistical structure of the recorded data surprisingly well. The deviation between the firing regimen of the model and the in vivo data are on the same level as deviations among monkeys and sessions. This suggests that, despite strong simplifications and abstractions of cortical network models, they are nevertheless capable of generating realistic spiking activity. To reach a realistic firing state, it was not only necessary to include both N -methyl-d-aspartate and GABAB synaptic conductances in our model, but also to markedly increase the strength of excitatory synapses onto inhibitory neurons (>2-fold) in comparison to literature values, hinting at the importance to carefully adjust the effect of inhibition for achieving realistic dynamics in current network models.


2019 ◽  
Author(s):  
Tim Vantilborgh

This chapter introduces the individual Psychological Contract (iPC) network model as an alternative approach to study psychological contracts. This model departs from the basic idea that a psychological contract forms a mental schema containing obligated inducements and contributions, which are exchanged for each other. This mental schema is captured by a dynamic network, in which the nodes represent the inducements and contributions and the ties represent the exchanges. Building on dynamic systems theory, I propose that these networks evolve over time towards attractor states, both at the level of the network structure and at the level of the nodes (i.e., breach and fulfilment attractor states). I highlight how the iPC-network model integrates recent theoretical developments in the psychological contract literature and explain how it may advance scholars understanding of exchange relationships. In particular, I illustrate how iPC-network models allow researchers to study the actual exchanges in the psychological contract over time, while acknowledging its idiosyncratic nature. This would allow for more precise predictions of psychological contract breach and fulfilment consequences and explains how content and process of the psychological contract continuously influence each other.


2020 ◽  
Author(s):  
Oksana Sorokina ◽  
Colin Mclean ◽  
Mike DR Croning ◽  
Katharina F Heil ◽  
Emilia Wysocka ◽  
...  

AbstractSynapses contain highly complex proteomes which control synaptic transmission, cognition and behaviour. Genes encoding synaptic proteins are associated with neuronal disorders many of which show clinical co-morbidity. Our hypothesis is that there is mechanistic overlap that is emergent from the network properties of the molecular complex. To test this requires a detailed and comprehensive molecular network model.We integrated 57 published synaptic proteomic datasets obtained between 2000 and 2019 that describe over 7000 proteins. The complexity of the postsynaptic proteome is reaching an asymptote with a core set of ~3000 proteins, with less data on the presynaptic terminal, where each new study reveals new components in its landscape. To complete the network, we added direct protein-protein interaction data and functional metadata including disease association.The resulting amalgamated molecular interaction network model is embedded into a SQLite database. The database is highly flexible allowing the widest range of queries to derive custom network models based on meta-data including species, disease association, synaptic compartment, brain region, and method of extraction.This network model enables us to perform in-depth analyses that dissect molecular pathways of multiple diseases revealing shared and unique protein components. We can clearly identify common and unique molecular profiles for co-morbid neurological disorders such as Schizophrenia and Bipolar Disorder and even disease comorbidities which span biological systems such as the intersection of Alzheimer’s Disease with Hypertension.


2020 ◽  
Author(s):  
Adela-Maria Isvoranu ◽  
Sacha Epskamp ◽  
Mike W.-L. Cheung

Post-traumatic stress disorder (PTSD) researchers have increasingly used psychological network models to investigate PTSD symptom interactions, as well as to identify central driver symptoms. It is unclear, however, how generalizable such results are. We have developed a meta-analytic framework for aggregating network studies while taking between-study heterogeneity into account, and applied this framework to the first-ever meta-analytic study of network models. We analyzed the correlational structures of 52 different samples with a total sample size of n = 29,561, and estimated a single pooled network model underlying the datasets, investigated the scope of between-study heterogeneity, and assessed the performance of network models estimated from single studies. Our main findings are that: (1) While several clear symptom-links and interpretable clusters can be identified in the network, most symptoms feature very similar levels of centrality. To this end, aiming to identify central symptoms in PTSD symptom networks may not be fruitful. (2) We identified large between-study heterogeneity, indicating that it should be expected for networks of single studies to not perfectly align with one-another, and meta-analytic approaches are vital for the study of PTSD networks. (3) Nonetheless, we found evidence that networks estimated from single studies may give rise to generalizable results, as our results aligned with previous descriptive analyses of reported network studies, and network models estimated from single samples lead to similar network structures as the pooled network model. We discuss the implications of these findings for both the PTSD literature as well as methodological literature on network psychometrics.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Dongge Cui ◽  
Chuanqu Zhu ◽  
Qingfeng Li ◽  
Qiyun Huang ◽  
Qi Luo

Deformation prediction is significant to the safety of foundation pits. Against with low accuracy and limited applicability of a single model in forecasting, a PSO-GM-BP model was established, which used the PSO optimization algorithm to optimize and improve the GM (1, 1) model and the BP network model, respectively. Combining a small amount of measured data during the excavation of a bottomless foundation pit in a Changsha subway station, the calculations based on the PSO-GM model, the PSO-BP network model, and the PSO-GM-BP model compared. The results show that both the GM (1, 1) and BP neural network models can predict accurate results. The prediction optimized by the particle swarm algorithm is more accurate and has more substantial applicability. Due to its reliable accuracy and wide application range, the PSO-GM-BP model can effectively guide the construction of foundation pits, and it also has certain reference significance for other engineering applications.


Sign in / Sign up

Export Citation Format

Share Document