A Review of Solid-State Additive Manufacturing Processes

Author(s):  
Sachin Kumar ◽  
Amlan Kar
2021 ◽  
Vol 33 (2) ◽  
Author(s):  
B. Reitz ◽  
C. Lotz ◽  
N. Gerdes ◽  
S. Linke ◽  
E. Olsen ◽  
...  

AbstractMankind is setting to colonize space, for which the manufacturing of habitats, tools, spare parts and other infrastructure is required. Commercial manufacturing processes are already well engineered under standard conditions on Earth, which means under Earth’s gravity and atmosphere. Based on the literature review, additive manufacturing under lunar and other space gravitational conditions have only been researched to a very limited extent. Especially, additive manufacturing offers many advantages, as it can produce complex structures while saving resources. The materials used do not have to be taken along on the mission, they can even be mined and processed on-site. The Einstein-Elevator offers a unique test environment for experiments under different gravitational conditions. Laser experiments on selectively melting regolith simulant are successfully conducted under lunar gravity and microgravity. The created samples are characterized in terms of their geometry, mass and porosity. These experiments are the first additive manufacturing tests under lunar gravity worldwide.


2021 ◽  
Vol 58 (1) ◽  
pp. 4-31
Author(s):  
C. Fleißner-Rieger ◽  
T. Pogrielz ◽  
D. Obersteiner ◽  
T. Pfeifer ◽  
H. Clemens ◽  
...  

Abstract Additive manufacturing processes allow the production of geometrically complex lightweight structures with specific material properties. However, by contrast with ingot metallurgy methods, the manufacture of components using this process also brings about some challenges. In the field of microstructural characterization, where mostly very fine structures are analyzed, it is thus indispensable to optimize the classic sample preparation process and to furthermore implement additional preparation steps. This work focuses on the metallography of additively manufactured Ti‑6Al‑4V components produced in a selective laser melting process. It offers a guideline for the metallographic preparation along the process chain of additive manufacturing from the metal powder characterization to the macro- and microstructural analysis of the laser melted sample. Apart from developing preparation parameters, selected etching methods were examined with regard to their practicality.


2019 ◽  
Vol 109 (03) ◽  
pp. 179-183
Author(s):  
J. Fischer ◽  
P. Springer ◽  
S. Fulga-Beising ◽  
K. Abu El-Qomsan

Das Fraunhofer IPA forscht an Workflows und Methoden für die Herstellung personalisierter Produkte von der Erfassung persönlicher Daten über die Analyse und Modellierung bis hin zur flexiblen, automatisierten Fertigung der Produkte. Der Beitrag beschreibt einen beispielhaften Anwendungsfall: die Herstellung einer personalisierten Brille. Für die nötige Flexibilität in der Fertigung wurde ein vollständig automatisiertes additives Fertigungssystem entwickelt, das im Applikationszentrum Industrie 4.0 des Fraunhofer IPA und des Instituts für Industrielle Fertigung und Fabrikbetrieb IFF der Universität Stuttgart integriert ist.   Fraunhofer IPA examines workflows and methods for the production of personalized products from the acquisition of personal data, analysis and modelling to the flexible, automated production of the products. This paper exemplifies an application using the production of personalized glasses. For this purpose, a fully automated additive manufacturing system was developed to provide the necessary flexibility in manufacturing.


2019 ◽  
Vol 109 (01-02) ◽  
pp. 24-29
Author(s):  
E. Abele ◽  
T. Scherer ◽  
F. Geßner ◽  
M. Weigold

Additive Fertigungsverfahren zeichnen sich durch große Gestaltungsfreiheit aus, welche die Herstellung komplexer Bauteile ermöglicht. Angesichts hoher Fertigungskosten ist die Prozesssicherheit nachgeordneter Bearbeitungsschritte (wie zum Beispiel die Gewindefertigung) von großer Bedeutung. Der Artikel stellt die Ergebnisse einer Untersuchungsreihe vor, die unterschiedliche Ansätze der Gewindefertigung in Bauteilen aus Stahl behandelt, die mittels Selektivem Laserschmelzverfahren gefertigt wurden.   Additive manufacturing processes are characterized by a high degree of design freedom to enablet the production of complex components. To reduce manufacturing costs, the process reliability of downstream processing steps (e. g. thread production) is of great importance. This article presents the results of a series of investigations dealing with different approaches to thread production in steel components manufactured by selective laser melting


Author(s):  
Turusha Ghimire ◽  
Atharva Joshi ◽  
Samgeeth Sen ◽  
Chinmay Kapruan ◽  
Utkarsh Chadha ◽  
...  

Author(s):  
Laura Daniela Vallejo Melgarejo ◽  
Jose García ◽  
Ronald G. Reifenberger ◽  
Brittany Newell

This document condenses the results obtained when 3D printing lenses and their potential use as diffraction gratings using Digital Light Processing (DLP), as an additive manufacturing technique. This project investigated the feasibility of using DLP additive manufacturing for producing custom designed lenses and gratings. DLP was identified as the preferred manufacturing technology for gratings fabrication. Diffraction gratings take advantage of the anisotropy, inherent in additive manufacturing processes, to produce a collated pattern of multiple fringes on a substrate with completely smooth surfaces. The gratings are transmissive and were manufactured with slit separations of 10, 25 and 50 μm. More than 50 samples were printed at various build angles and mechanically treated for maximum optical transparency. The variables of the irradiance equation were obtained from photographs taken with an optical microscope. These values were used to estimate theoretical irradiance patterns of a diffraction grating and compared against the experimental 3-D printed grating. The resulting patterns were found to be remarkably similar in amplitude and distance between peaks when compared to theoretical values.


Sign in / Sign up

Export Citation Format

Share Document