scholarly journals A Brief Review on Aerodynamic Performance of Wingtip Slots and Research Prospect

Author(s):  
Dan Liu ◽  
Bifeng Song ◽  
Wenqing Yang ◽  
Xiaojun Yang ◽  
Dong Xue ◽  
...  

AbstractWingtip slots, where the outer primary feathers of birds split and spread vertically, are regarded as an evolved favorable feature that could effectively improve their aerodynamic performance. They have inspired many to perform experiments and simulations as well as to relate their results to aircraft design. This paper aims to provide guidance for the research on the aerodynamic mechanism of wingtip slots. Following a review of previous wingtip slot research, four imperfections are put forward: vacancies in research content, inconsistencies in research conclusions, limitations of early research methods, and shortage of the aerodynamic mechanism analysis. On this basis, further explorations and expansion of the influence factors for steady state are needed; more attention should be poured into the application of flow field integration method to decompose drag, and evaluation of variation in induced drag seems a more rational choice. Geometric and kinematic parameters of wingtip slot structure in the unsteady state, as well as the flexibility of wingtips, should be taken into account. As for the aerodynamic mechanism of wingtip slots, the emphasis can be placed on the study of the formation, development, and evolution of wingtip vortices on slotted wings. Besides, some research strategies and feasibility analyses are proposed for each part of the research.

2016 ◽  
Vol 121 (1235) ◽  
pp. 73-94 ◽  
Author(s):  
A. Castrichini ◽  
V. Hodigere Siddaramaiah ◽  
D.E. Calderon ◽  
J.E. Cooper ◽  
T. Wilson ◽  
...  

ABSTRACTA recent consideration in aircraft design is the use of folding wing-tips with the aim of enabling higher aspect ratio aircraft with less induced drag while also meeting airport gate limitations. This study investigates the effect of exploiting folding wing-tips in flight as a device to reduce both static and dynamic loads. A representative civil jet aircraft aeroelastic model was used to explore the effect of introducing a wing-tip device, connected to the wings with an elastic hinge, on the load behaviour. For the dynamic cases, vertical discrete gusts and continuous turbulence were considered. The effects of hinge orientation, stiffness, damping and wing-tip weight on the static and dynamic response were investigated. It was found that significant reductions in both the static and dynamic loads were possible. For the case considered, a 25% increase in span using folding wing-tips resulted in almost no increase in loads.


Meccanica ◽  
2020 ◽  
Vol 55 (10) ◽  
pp. 1917-1947
Author(s):  
J. E. Guerrero ◽  
M. Sanguineti ◽  
K. Wittkowski

Abstract Traditional winglets are designed as fixed devices attached at the tips of the wings. The primary purpose of the winglets is to reduce the lift-induced drag, therefore improving aircraft performance and fuel efficiency. However, because winglets are fixed surfaces, they cannot be used to control lift-induced drag reductions or to obtain the largest lift-induced drag reductions at different flight conditions (take-off, climb, cruise, loitering, descent, approach, landing, and so on). In this work, we propose the use of variable cant angle winglets which could potentially allow aircraft to get the best all-around performance (in terms of lift-induced drag reduction), at different flight phases. By using computational fluid dynamics, we study the influence of the winglet cant angle and sweep angle on the performance of a benchmark wing at Mach numbers of 0.3 and 0.8395. The results obtained demonstrate that by adjusting the cant angle, the aerodynamic performance can be improved at different flight conditions.


2011 ◽  
Vol 127 ◽  
pp. 415-420 ◽  
Author(s):  
Jie Qin ◽  
Xiao Yan Wang

Change the aerodynamic characteristics of the flying object by controlling the canard deflection and achieve ballistic correction of the flying object. Select different angles of attack to simulate and analyze the changes on aerodynamic performance of the flying object at different flight speed. Study the variation regularity and influence factors of aerodynamic characteristics with the deflection angle and the area of the canard as characteristic parameters.


2021 ◽  
Vol 2117 (1) ◽  
pp. 012013
Author(s):  
S P Setyo Hariyadi ◽  
Sutardi ◽  
Sukahir ◽  
Jamaludin

Abstract The swept-back wing has been used in almost all aircraft wings. This is necessary to reduce the pressure drag from the wings so that there is an increase in aerodynamic performance. The aerodynamic performance is the ratio between the total drag coefficient and the lift coefficient. This research attempts to explain the swept-back wing phenomenon in unmanned aerial vehicles (UAV) on Eppler 562 airfoil. The numerical simulation uses the k-ε turbulent model at Reynolds number (Re) = 2.34 x 104. Variation of backward swept angle Λ = 0°, 15°, and 30°. The separation growth Λ = 0° occurred more on the wing root, while Λ = 15° and Λ = 30° occurred more on the wingtip. At Λ = 15°, as the angle of attack increases, the area of the separation increases, and the area of the transition towards the separation decreases. The reattach area also has an increase in the area of the trailing edge. At Λ = 30°, with an increase in the angle of attack, there is a shift from the wingtip area to the mid-span. The area of separation and transition to separation has increased significantly. The re-attach area at α = 8o has not been seen, so at α = 12o it has been seen significantly. The vorticity on the x-axis shows Λ = 15°, and Λ = 30° has a wider area while on the z-axis, Λ = 15°, and Λ = 30° have stronger vortex strength. However, in the mid-span, Λ = 0° has a stronger result.


Author(s):  
Joel Guerrero ◽  
Kevin Wittkowski ◽  
Marco Sanguineti

Traditional winglets are designed as fixed devices attached at the tips of the wings. The primary purpose of the winglets is to reduce the lift-induced drag, therefore improving aircraft performance and fuel efficiency. However, because winglets are fixed surfaces, they cannot be used to control lift-induced drag reductions or to obtain the largest lift-induced drag reductions at different flight conditions (take-off, climb, cruise, loitering, descent, approach, landing, and so on). In this work, we propose the use of variable cant angle winglets which could potentially allow aircraft to get the best all-around performance (in terms of lift-induced drag reduction), at different flight phases. By using computational fluid dynamics, we study the influence of the winglet cant angle and sweep angle on the performance of a benchmark wing at Mach numbers of 0.3 and 0.8395. The results obtained demonstrate that by adjusting the cant angle, the aerodynamic performance can be improved at different flight conditions.


Aerospace ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 126 ◽  
Author(s):  
Joel Guerrero ◽  
Marco Sanguineti ◽  
Kevin Wittkowski

Winglets are commonly used drag-reduction and fuel-saving technologies in today’s aviation. The primary purpose of the winglets is to reduce the lift-induced drag, therefore improving fuel efficiency and aircraft performance. Traditional winglets are designed as fixed devices attached at the tips of the wings. However, because they are fixed surfaces, they give their best lift-induced drag reduction at a single design point. In this work, we propose the use of variable cant angle winglets which could potentially allow aircraft to get the best all-around performance (in terms of lift-induced drag reduction), at different angle-of-attack values. By using computational fluid dynamics, we study the influence of the winglet cant angle and sweep angle in the performance of a benchmark wing at a Mach number of 0.8395. The results obtained demonstrate that by carefully adjusting the cant angle, the aerodynamic performance can be improved at different angles of attack.


2011 ◽  
Vol 341-342 ◽  
pp. 442-446
Author(s):  
Hong Wei Yan ◽  
Yu Zhao

Caterpillar walk agency is the supporting a large walk machinery, used to support the weight of the whole machine, inherit institution in engineering work force produces in the process, and complete the machine in March, backward, also, the mobile. Homework Therefore, to average large engineering machinery chassis general design into tracked drive structure, and tracked down the vertical center symmetrical layout. This paper mainly studied and discussed crawler walks the organization design principles and exercise stress analysis, summarized the influence factors of walking organization for the future, the design of the machine can achieve reasonable structure, safe and reliable, action flexible have laid a good foundation.


2011 ◽  
Vol 301-303 ◽  
pp. 666-670 ◽  
Author(s):  
Xian Feng Xiong ◽  
De Ren Kong ◽  
Xiao Feng Ruan

Induction-type coil target is a common used zone-block device for measuring projectile’s velocity. The magnetized projectile is simplified as the point magnetic dipole, and then the physical model of magnetized projectile passing through the coil target is established, based on these the mathematic model of inductive electromotive force when the magnetized projectile flying through the coil target in a certain speed is deduced with the electromagnetic theory; According to the model, the characteristic parameters such as the zero-crossing point, the slope of zero-crossing point and the extreme value point are discussed, finally the principle and the influence factors of velocity measurement by single-coil target and paired- coil targets are described. All these above provide some foundation and advices for designing and using induction-type coil target.


2014 ◽  
Vol 644-650 ◽  
pp. 1939-1942 ◽  
Author(s):  
Hua Xin ◽  
Zhang Ji ◽  
Ming Lei

With reference to a certain type of flying drones with imitation airfoil design a seagull flat wings and on the basis of its wing tip winglet in this paper. Through to the numerical simulation of two wings, it is concluded that the bionic wing aerodynamic performance is superior to the conventional airfoil wing, after adding wing tip winglet bionic wings effectively reduced the downwash velocity, reduce the induced drag, makes the wing aerodynamic performance is improved. Provide theoretical reference for the design of the uav wing


1993 ◽  
Vol 340 (1294) ◽  
pp. 361-380 ◽  

The aerodynamic properties of a bird’s tail, and the forces produced by it, can be predicted by using slender lifting surface theory. The results of the model show that unlike conventional wings, which generate lift proportional to their area, the lift generated by the tail is proportional to the square of its maximum continuous span. Lift is unaffected by substantial variations in tail shape provided that the tail initially expands in width along the direction of flow. Behind the point of maximum width of the tail the flow is dominated by the wake of the forward section. Any area behind this point therefore causes only drag, not lift. The centre of lift is at the centre of area of the part of the tail in front of the point of maximum width. The moment arm of the tail, about its apex, is therefore more than twice the moment arm of a conventional wing about its leading edge. The drag of the tail is a combination of induced drag proportional to lift, and profile drag proportional to surface area. Induced drag can be halved by drooping the outer tail feathers to generate leading edge suction. This may be used for control, particularly in slow flight when both wings and tail are generating maximum lift. The slender lifting surface model is very accurate at angles of attack below about 15°. At higher angles of attack vortex formation at the leading edge can stabilize the flow over the tail and thereby generate increased lift by a detached vortex mechanism. Asymmetry in the orientation of the leading edges with relation to the freestream (either in roll, yaw or caused by asymmetry in the planform) is amplified in the flow field and leads to large rolling and yawing forces that could be used for control in turning manoeuvres. The slender lifting surface model can be used to examine the effect of variations in tail shape and tail spread on the aerodynamic performance of the tail. A forked tail that has a triangular planform when spread to just over 120° gives the best aerodynamic performance and this may be close to a universal optimum, in terms of aerodynamic efficiency, for a means to control pitch and yaw. However, natural selection may act to optimise the performance of the tail when it is not widely spread. The tail is normally only widely spread during manoeuvres, or at low speeds, selection may act to improve the efficiency of the tail when it is spread to only a relatively narrow angle - for example to maximize the bird’s overall lift to drag ratio - the optimum shape at any angle of spread is that which gives a straight trailing edge to the tail. This will always give a slightly forked planform, but fork depth will depend on how widely the tail is spread when selection acts, and this depends on the criteria for optimization under natural selection. A forked tail is more sensitive to changes in angle of attack and angle of spread, than other tail types. Forked tails are more susceptible to damage than other tail morphologies, and suffer a greater loss of performance following damage. Forked tails also confer less inherent stability than any other type of tail. Aerodynamic performance may not be an im portant optimization criterion for birds that fly in a cluttered environment, or do not fly very much. Natural selection, under these conditions, may favour tails of other shapes. The aerodynamic costs of sexually selected elongated tails can be predicted from the model. These predictions can be used to distinguish between the various models for the evolution of elongated tails. Elongated graduated tails and pintails could have evolved either through a Fisherian or H andicap mechanism. The evolution of long forked tails can be initially favoured by natural selection, the pattern of feather elongation seen in sexually selected forked tails is predicted by the Fisher hypothesis (Fisher 1930) but not by any of the other theories of sexual selection.


Sign in / Sign up

Export Citation Format

Share Document