Influence of delta phase precipitation on static recrystallization of cold-rolled Inconel 718 alloy in solid solution treatment

2019 ◽  
Vol 26 (2) ◽  
pp. 148-153
Author(s):  
Neng-yong Ye ◽  
Ming Cheng ◽  
Shi-hong Zhang ◽  
Hong-wu Song ◽  
Hong-wei Zhou
Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3336
Author(s):  
Shuaijiang Yan ◽  
Yun Wang ◽  
Qingxiang Wang ◽  
Chengsong Zhang ◽  
Dazhi Chen ◽  
...  

The present study aimed to optimize the phase constituents and mechanical properties of the spark plasma sintered (SPS) Inconel 718 (IN718) alloy. A series of heat treatment routes were designed based on the phase relations in IN718 and performed for the optimization. The microstructure and phase compositions of the SPS IN718 alloys were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), and transmission electron microscopy (TEM). The mechanical properties of the samples were characterized at room temperature and at 650 °C. The results showed that large amounts of γ” (Ni3Nb) and γ’ (Ni3(Al, Ti)) strengthening phases precipitated in the IN718 alloy after direct aging (DA) of the as-fabricated sample. Moreover, the mechanical properties of the DA sample were comparable to that of the best one of the solution-treated and aged counterparts. The analysis showed that the rapid sintering and solid solution treatment of the IN718 alloy were achieved simultaneously by SPS. In the case of the SPS IN718 material, the direct aging regime had the same heat treatment effect as the conventional solid solution and aging treatment. This contributes toward improving the production efficiency and reduces manufacturing costs in the actual production process.


Author(s):  
L. S. Lin ◽  
C. C. Law

Inconel 718, a precipitation hardenable nickel-base alloy, is a versatile high strength, weldable wrought alloy that is used in the gas turbine industry for components operated at temperatures up to about 1300°F. The nominal chemical composition is 0.6A1-0.9Ti-19.OCr-18.0Fe-3Mo-5.2(Cb + Ta)- 0.1C with the balance Ni (in weight percentage). The physical metallurgy of IN 718 has been the subject of a number of investigations and it is now established that hardening is due, primarily, to the formation of metastable, disc-shaped γ" an ordered body-centered tetragonal structure (DO2 2 type superlattice).


Materials ◽  
2017 ◽  
Vol 10 (8) ◽  
pp. 858 ◽  
Author(s):  
Dan Song ◽  
Cheng Li ◽  
Liwen Zhang ◽  
Xiaolong Ma ◽  
Guanghui Guo ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Moukrane Dehmas ◽  
Jacques Lacaze ◽  
Aliou Niang ◽  
Bernard Viguier

Inconel 718 is widely used because of its ability to retain strength at up to 650∘C for long periods of time through coherent metastable Ni3Nb precipitation associated with a smaller volume fraction of Ni3Al precipitates. At very long ageing times at service temperature, decomposes to the stable Ni3Nb phase. This latter phase is also present above the solvus and is used for grain control during forging of alloy 718. While most works available on precipitation have been performed at temperatures below the solvus, it appeared of interest to also investigate the case where phase precipitates directly from the fcc matrix free of precipitates. This was studied by X-ray diffraction and transmission electron microscopy (TEM). TEM observations confirmed the presence of rotation-ordered domains in plates, and some unexpected contrast could be explained by double diffraction due to overlapping phases.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1812 ◽  
Author(s):  
Xiaoda Liu ◽  
Ming Yin ◽  
Shaohua Zhang ◽  
Huan Wei ◽  
Baosheng Liu ◽  
...  

The corrosion behavior of Mg-3Al-xGe (x = 1, 3, 5) alloy in as-cast and as-solid was investigated by virtue of microstructure, corrosion morphology observation, and electrochemical measurement. Among the as-cast alloys, the corrosion rate of Mg-3Al-1Ge with a discontinuous bar-morphology was the highest, which was 101.7 mm·a−1; the corrosion rate of Mg-3Al-3Ge with a continuous network distribution was the lowest, which was 23.1 mm·a−1; and the corrosion rate of Mg-3Al-5Ge of Ge-enriched phase with sporadic distribution was in-between, which was 63.9 mm·a−1. It is suggested that the morphology of the Mg2Ge phase changes with a change in Ge content, which affects the corrosion performance of the alloy. After solid solution treatment, the corrosion rate of the corresponding solid solution alloy increased—Mg-3Al-1Ge to 140.5 mm·a−1, Mg-3Al-3Ge to 52.9 mm·a−1, and Mg-3Al-5Ge to 87.3 mm·a−1, respectively. After investigation of the microstructure, it can be suggested that solid solution treatment dissolves the Mg17Al12 phase, which changes the phase composition of the alloy and also affects its microstructure, thus affecting its corrosion performance.


2021 ◽  
Vol 1023 ◽  
pp. 45-52
Author(s):  
Xiao Yan Wang ◽  
Meng Li ◽  
Zhi Xun Wen

After solid solution treatment at 1335°C for 4 hours and cooling to room temperature at different rate, the nickel-based single crystal superalloy were made into three kinds of nickel-based single crystal superalloy materials containing different size γ′ phases, respectively. The tensile test of I-shaped specimens was carried out at 980°C, and their effect of γ′ phase microstructure on the tensile properties was studied. The results show that the yielding strength of the material air-cooled to room temperature was lower than that with cooling rate at 0.15°C/s, but both of them were lower than the yielding strength of original material. Little difference was found on the elastic modulus of I-shaped specimens made of three kinds of materials. When the cubic degree of the γ′ phase is higher and the size is larger, the tensile properties of the material is better, which can be attributed to the larger size and narrower channel of the matrix phase that lead to higher dislocation resistance.


Sign in / Sign up

Export Citation Format

Share Document