Influences of the γ′ Phase on the Mechanical Properties of a Nickel-Based Single Crystal Superalloy

2021 ◽  
Vol 1023 ◽  
pp. 45-52
Author(s):  
Xiao Yan Wang ◽  
Meng Li ◽  
Zhi Xun Wen

After solid solution treatment at 1335°C for 4 hours and cooling to room temperature at different rate, the nickel-based single crystal superalloy were made into three kinds of nickel-based single crystal superalloy materials containing different size γ′ phases, respectively. The tensile test of I-shaped specimens was carried out at 980°C, and their effect of γ′ phase microstructure on the tensile properties was studied. The results show that the yielding strength of the material air-cooled to room temperature was lower than that with cooling rate at 0.15°C/s, but both of them were lower than the yielding strength of original material. Little difference was found on the elastic modulus of I-shaped specimens made of three kinds of materials. When the cubic degree of the γ′ phase is higher and the size is larger, the tensile properties of the material is better, which can be attributed to the larger size and narrower channel of the matrix phase that lead to higher dislocation resistance.

2005 ◽  
Vol 297-300 ◽  
pp. 1220-1222
Author(s):  
Shi Chang Cheng ◽  
Zhao Jie Lin ◽  
Gang Yang ◽  
Zheng Dong Liu

The authors experimentally investigated the change of mechanical properties of Inconel X-750 alloy under various heat treatments. For the selected specimens, solid solution treatment under different temperatures was carried out, followed air cooling or furnace cooling. Results show that suitable solid solution treatment and air cooling enhances the strength, plasticity, impact toughness at room temperature of the alloy and lowers the hardness of the alloy at room temperature.


2011 ◽  
Vol 686 ◽  
pp. 253-259
Author(s):  
Xu Ning ◽  
Wei Dong Xie ◽  
Chun Mei Dang ◽  
Xiao Dong Peng ◽  
Yan Yang ◽  
...  

A series of Mg-6Al-2Sr-1.5Y-xNd (x=0, 0.3, 0.6, 0.9, 1.2) alloy samples were prepared and their microstructures were observed and mechanical properties were measured. The existing forms of Y and Nd were studied. The effects of Y and Nd on microstructure and mechanical properties of AJ62 alloy were investigated. The results show that the main existing forms of Y and Nd in AJ62 alloy are Al2Y and Al2Nd. The combined addition of rare earth Y and Nd can refine α-Mg matrix obviously and reduce the amount of the β-Mg17Al12phases; after solid solution treatment, the tensile strength of the alloys rise first and fall later with increasing content of Nd. When the content of Nd is about 0.6%wt, the values of tensile strengthes are up to the maximum both at room temperature and at 448 K.


2015 ◽  
Vol 816 ◽  
pp. 446-450
Author(s):  
Xiao Bing Zheng ◽  
Wen Bo Du ◽  
Ke Liu ◽  
Zhao Hui Wang ◽  
Shu Bo Li

The microstructure evolution of the Mg-3Zn-0.5Er-0.5Al (mass fraction, %) alloy under the different condition was investigated. The results showed that as-cast Mg-3Zn-0.5Er-0.5Al alloy mainly consisted of primary large irregular Mg4Zn7 phase and needlelike (Mg, Zn, Er, Al) quaternary phase. Mg4Zn7 phase almost dissolved into the matrix after solid solution treatment at 400 oC for 10 h, while the (Mg, Zn, Er, Al) quaternary phase still existed. The solution treated alloy was extruded at 250 °C. The ultimate tensile strength of the as-extruded alloy was approximately 268 MPa and the YTS was approximately 163 MPa companying with an elongation of 28%. The tensile strength of the as-extruded alloy improved obviously, which was mainly attributed to the grain refinement.


2010 ◽  
Vol 654-656 ◽  
pp. 651-654 ◽  
Author(s):  
Guang Yu Yang ◽  
Jie Hua Li ◽  
Wan Qi Jie ◽  
Zhong Yu

A new composition sand-casting magnesium alloy, Mg-6Zn-2Gd-0.6Zr, was developed. It was found that the room temperature mechanical properties of the alloy were superior: b=270MPa, 0.2=175MPa, =8%. Meanwhile, the elevated-temperature strength and creep resistance were significantly improved, comparing with Mg-5Zn-0.6Zr (ZK51) commercial magnesium alloy. The as-cast microstructure of the alloy was mainly consisted of (Mg) matrix, (+Mg3Gd2Zn3+Mg3Gd) eutectic phase, which was distributed along the (Mg) grain boundary with coarse netted shape. After solid-solution treatment and subsequently aging treatment for the alloy, the secondary phases re-precipitated as fine discontinues semi-netted or short rod-like precipitations, also including some fine spherical precipitations in the  matrix, which were responsible for the properties improvement of the alloy.


2005 ◽  
Vol 488-489 ◽  
pp. 257-260 ◽  
Author(s):  
Jianguo Peng ◽  
Qu Dong Wang ◽  
Man Ping Liu ◽  
Yongjun Chen ◽  
Wen Jiang Ding ◽  
...  

Effects of solution and aging treatment on microstructure and mechanical properties of rolled AM50+xCa alloys(x=0, 1, 2 wt. %) were studied. The results indicated that, with increasing solution time i, the secondary phase Mg17Al12 was dissolved into the Mg matrix and Al2Ca became thinner and shorter, then gradually broken and spheroidized.With an increase of aging time, Mg17Al12 precipitated from the Mg matrix in the form of particles and Al2Ca changed a little. After solution treatment, hardness and tensile properties of the alloy’s decreased. After the aging treatment, the alloy’s hardness increased first and decreased later while the tensile properties increased little. The solution and aging treatment can increase the ductility of AM50 and AM50+1Ca alloys. For AM50+2Ca alloy, the ductility increased after solid solution treatment and decreased after aging treatment.


2013 ◽  
Vol 747-748 ◽  
pp. 549-558 ◽  
Author(s):  
Xiao Guang Wang ◽  
Jia Rong Li ◽  
Zhen Xue Shi ◽  
Shi Zhong Liu

An observation was conducted on the microstructures of as-cast as well as solid solution treated the third generation single crystal superalloy DD9 using optical microscope and SEM. The effects of solid solution temperature and time on the eutectic fractions of γ/γ and size of γ of the alloy were investigated. The results showed that the microstructure of DD9 was uniform. W and Re segregated to the dendrite cores while Al, Ta and Nb were enriched in interdendritic regions during solidification. The eutectic fractions of γ/γ reduced with the solid solution temperature raising and the solid solution time prolonging. When solid solution temperature increased to 1340, the eutectic in the alloy was entirely dissolved. The size of γ in dendritic cores was consistent, however the size of γ in interdendritic regions was gradually decreased with the increase of solid solution treatment and time, eventually the sizes of γ were completely uniform at the temperature of 1340


2013 ◽  
Vol 747-748 ◽  
pp. 478-482 ◽  
Author(s):  
Jian Wei Xu ◽  
Yun Song Zhao ◽  
Ding Zhong Tang

The tensile properties of a low-cost first generation single crystal superalloy DD16 have been investigated. The results show that values of the tensile strength and yield strength of DD16 alloy were similar at typical temperatures; from room temperature to 760, the yield strength of DD16 alloy increases; However, above 760, the yield strength of DD16 alloy decreases remarkably, and the maximum of the yield strength was 1145.5MPa at 760. From room temperature to 760, the fracture mode was cleavage fracture; But above 760, the fracture characteristics changed from cleavage to dimple.


Sign in / Sign up

Export Citation Format

Share Document