scholarly journals Role of Cystoseira mediterranea extracts (Sauv.) in the Alleviation of salt stress adverse effect and enhancement of some Hordeum vulgare L. (barley) growth parameters

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Leila Bensidhoum ◽  
El-hafid Nabti

AbstractCystoseira mediterranea (Sauv.) extract was tested for its ability to restore barley (Hordeum vulgare) growth under salt stress (350 mM NaCl), shoot growth; membrane integrity; lipid peroxidation and hydrogen peroxide determination were performed. In normal conditions, the obtained data revealed the ability of the extract to stimulate most of barley growth parameters. However, it showed significant effect on most of barley growth parameters (plant height, fresh and dry weight of shoots and roots) and chlorophyll content, under salt stress. The measurement of stress parameters (membrane integrity, lipid peroxidation and hydrogen peroxide) revealed significant effect of C. mediterranea extract on reducing the deleterious impact of salt stress on barley seedlings.

2013 ◽  
Vol 82 (3) ◽  
pp. 193-197 ◽  
Author(s):  
Hu KeLing ◽  
Zhang Ling ◽  
Wang JiTao ◽  
You Yang

The objective of this study was to investigate the effect of exogenous selenium (Se) supply (0, 2, 4, 8, 16 μM) on the growth, lipid peroxidation and antioxidative enzyme activity of 100 mM NaCl-stressed melon (<em>Cucumis melo</em> L.) seedlings. Salt stress significantly reduced the growth attributes including stem length, stem diameter, dry weight and increased antioxidative enzyme activity [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT)]. Moreover, the plant exhibited a significant increase in electrolyte leakage and malondialdehyde (MDA) content under NaCl stress. Se supplementation not only improved the growth parameters but also successfully ameliorated the adverse effect caused by salt stress in melon seedlings. However, the mitigation of NaCl-stressed seedlings was different depending on the Se concentration. At lower concentrations (2–8 μM), Se improved growth and acted as antioxidant by inhibiting lipid peroxidation and increasing in SOD and POD enzymes activity under salt stress. At higher concentrations (16 μM), Se exerted diminished beneficial effects on growth. Whereas CAT activity was enhanced. The result indicated that Se supplementation had a positive physiological effect on the growth and development of salt-stressed melon seedlings.


2021 ◽  
Vol 13 (9) ◽  
pp. 5074
Author(s):  
Urooj Kanwal ◽  
Muhammad Ibrahim ◽  
Farhat Abbas ◽  
Muhammad Yamin ◽  
Fariha Jabeen ◽  
...  

Phytoremediation is a cost-effective and environmentally friendly approach that can be used for the remediation of metals in polluted soil. This study used a hedge plant–calico (Alternanthera bettzickiana (Regel) G. Nicholson) to determine the role of citric acid in lead (Pb) phytoremediation by exposing it to different concentrations of Pb (0, 200, 500, and 1000 mg kg−1) as well as in a combination with citric acid concentration (0, 250, 500 µM). The analysis of variance was applied on results for significant effects of the independent variables on the dependent variables using SPSS (ver10). According to the results, maximum Pb concentration was measured in the upper parts of the plant. An increase in dry weight biomass, plant growth parameters, and photosynthetic contents was observed with the increase of Pb application (200 mg kg−1) in soil while a reduced growth was experienced at higher Pb concentration (1000 mg kg−1). The antioxidant enzymatic activities like superoxide dismutase (SOD) and peroxidase (POD) were enhanced under lower Pb concentration (200, 500 mg kg−1), whereas the reduction occurred at greater metal concentration Pb (1000 mg kg−1). There was a usual reduction in electrolyte leakage (EL) at lower Pb concentration (200, 500 mg kg−1), whereas EL increased at maximum Pb concentration (1000 mg kg−1). We concluded that this hedge plant, A. Bettzickiana, has the greater ability to remediate polluted soils aided with citric acid application.


Hereditas ◽  
2010 ◽  
Vol 147 (3) ◽  
pp. 114-122 ◽  
Author(s):  
H. Bchini ◽  
M. Ben Naceur ◽  
R. Sayar ◽  
H. Khemira ◽  
L. Ben Kaab-Bettaeïb

2016 ◽  
Vol 2 (1) ◽  
pp. 74-81 ◽  
Author(s):  
Sakil Mahmud ◽  
Shayla Sharmin ◽  
Bishan Lal Das Chowdhury ◽  
Mohammad Anowar Hossain ◽  
Muhammad Javidul Haque Bhuiyan

To explore the possibility of using methyl jasmonate (MeJA) for alleviation of salt stress, the present study was conducted where six rice varieties (BRRI dhan31, BRRI dhan46, Gota, Kajalsail, Pokkali and Pengek) were grown in non saline (0 dSm-1), saline (12 dSm-1), saline (12 dSm-1) + 10 ?M MeJA and saline (12 dSm-1) + 20 ?M MeJA conditions at germination stage (till the 9 days). MeJA was applied by imbibing seeds in it for 24 hours. To evaluate the effect of MeJA on saline stressed plant at germination stage, change in growth parameters namely germination percentage, shoot and root length, fresh and dry wt. of shoot, fresh and dry wt. of root and biochemical component- activity of alpha-amylase were monitored. Salinity had a minimum effect on final germination percentage (FGP) of rice varieties, but delayed in attaining it. MeJA had least positive effect. Salinity significantly reduced the shoot and root length, fresh and dry weight of all the varieties. MeJA had more decreasing effect in susceptible varieties while increasing effect in moderately tolerant and tolerant. Activity of alpha-amylase in germinated seed varied from 0.051 mg to 0.111 mg mal./mg tissue. At 12dSm-1 salinity, susceptible and moderately tolerant varieties showed significant reduction but tolerant showed significant increase. MeJA intensified the negative effect further in susceptible varieties. In tolerant and moderately tolerant varieties, increment in activity took place and 10 ?M had a better effect over 20 ?M MeJA.Asian J. Med. Biol. Res. March 2016, 2(1): 74-81


2015 ◽  
Vol 67 (3) ◽  
pp. 993-1000 ◽  
Author(s):  
Lydia Shtereva ◽  
Roumiana Vassilevska-Ivanova ◽  
Tanya Karceva

An experiment was carried out hydroponically under laboratory conditions to investigate the effect of salt stress on several physiological and biochemical parameters of three sweet corn (Zea mays L. var. saccharata) genotypes: lines 6-13, C-6 (pollen source) and their heterotic F1 hybrid ?Zaharina?. The degree of salinity tolerance among these genotypes was evaluated at three different sodium chloride (NaCl) concentrations: 0 mM, 100 mM, 125 mM and 150 mM. Seed germination, plant growth and biochemical stress determining parameters such as malondialdehyde (MDA), proline content and hydrogen peroxide (H2O2) levels were compared between seedlings of lines and hybrid. The obtained results indicated that both lines and hybrid have similar responses at different salinity levels for all examined traits. All the seedlings? growth parameters, such as germination percentage, root length, shoot length, root and shoot fresh and dry weight, decreased with increasing salinity level. MDA, proline and H2O2 increased at different saline conditions in comparison to the control. Based on the results, of the three genotypes examined, the hybrid Zaharina, followed by line C-6, was more salt-sensitive than line 6-13 in salt stress condition.


HortScience ◽  
2022 ◽  
Vol 57 (1) ◽  
pp. 32-39
Author(s):  
Dharti Thakulla ◽  
Bruce L. Dunn ◽  
Carla Goad ◽  
Bizhen Hu

Algae is not desirable in hydroponics and creates problems such as reduced yield and decreased dissolved oxygen, and affects the physiology of plants and, thus, needs to be controlled. An experiment was conducted in Ebb and Flow hydroponic systems to investigate the application timing and rates of two hydrogen peroxide products (Zerotol and PERpose Plus). Treatments included 35 mL weekly, 35 mL biweekly, 70 mL weekly, 70 mL biweekly, and a control with no application of hydrogen peroxide using a 40-gallon reservoir of water. Pepper ‘Early Jalapeno’ and ‘Lunchbox Red’ and tomato ‘Geronimo’ and ‘Little Sicily’ were used. The study was conducted in a split-plot design with two replications over time. Plant growth parameters, including plant height, flower number, net CO2 assimilation, fresh weight, and dry weight were recorded. Algae data, including dry weight, algae cell counts, and chl a were also measured. Results indicated that with increasing rate and timing of either product decreased algae counts, dry weight, and chl a values. However, weekly and biweekly application of 70 mL of both products were not different for algae quantification. In pepper, plant height, shoot fresh and dry weight, and root fresh and dry weight were found to be significantly greater with Zerotol 35 mL biweekly, Zerotol 70 mL weekly, PERpose Plus 35 mL biweekly, and PERpose Plus 70 mL weekly compared with the control. ‘Lunchbox Red’ was significantly greater than ‘Early Jalapeno’ in all growth parameters, except soil plant analysis development (SPAD). ‘Lunchbox Red’ had the greatest flower number, with weekly application of 70 mL PERpose Plus. In tomato, greatest flower number and SPAD were observed in ‘Geronimo’ with a weekly application of 70 mL PERpose Plus and 70 mL Zerotol, respectively. Greater shoot and root fresh and dry weight for both tomato cultivars were recorded with 35 mL biweekly or 70 mL weekly application with either product. The results from both plants as well as algae analysis suggest that weekly application of 70 mL of either Zerotol or PERpose Plus produced the best results in terms of controlling algae and improving the growth of pepper and tomato plants.


Sign in / Sign up

Export Citation Format

Share Document