scholarly journals Assessment of river water–groundwater–seawater interactions in the coastal delta of Bangladesh based on hydrochemistry and salinity distribution

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Sushanta Kumar Roy ◽  
Anwar Zahid

AbstractA synchronization study among hydrochemistry, hydrochemical facies evaluation, EC observation, salinity distribution and groundwater flow direction has been addressed to assess river water–groundwater–seawater interactions in the coastal delta of southern Bangladesh. The findings show that river water, shallow groundwater and deep groundwater interact with seawater at various intensities within the complex dynamics of hydrochemical facies evaluation. Deep groundwater is intensively influenced by seawater, where shallow groundwater is moderately affected and river water is very negligibly affected. Major cation and anion have been plotted in the Piper diagrams and hydrochemical facies diagrams (HFE-D) to clarify the result. More than 60% of the water samples of the river lie on the Ca-HCO3 (or Mg-HCO3) facies quadrant, and more than 70% of the shallow groundwater samples and more than 95% of the deep groundwater samples lie on the Na-Cl facies quadrant of the HFE-D diagram. River water types are dissimilar, and approximately 82% of facies are characterized by freshening phases and 18% by intrusion phases. Mixed water types with predominate of Na-Cl were observed in shallow groundwater where the hydrochemical facies are characterized by 53 percent freshening phases and 47 percent intrusion phases. Deep groundwater hydrochemistry clearly indicates the dominant Na-Cl type of water in the study area where only four hydrochemical facies are observed and 78 percent correspond to the intrusion phases and 22 percent to the freshening phases. Both direct and reverse cation exchange reactions take place in shallow groundwater, where deep groundwater is predominantly characterized by reverse cation exchange reactions. Two end members: seawater of Bay of Bengal and freshwater, contribute to the exchange reactions in the coastal aquifer of the study area. In terms of nitrate contamination, river waters are affected by negligible to low concentrations, shallow groundwater is affected by moderate to high concentrations and deep groundwater is affected by moderate to very high nitrate concentrations. Dissimilarity in electrical conductivity (EC) values, variation of salinity distribution maps and groundwater flow direction suggest the possible interconnections among river water, groundwater and aquifer sediments. Significant concentrations of Na+ and Cl− ions lead to seawater contamination in groundwater, and HCO3− along with Na+, Ca2+, Mg2+ in river water suggests mixing of freshwater and seawater, which could have adverse effects both in coastal delta aquatic life and in agriculture.

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3310
Author(s):  
Yuqing Zhao ◽  
You-Kuan Zhang ◽  
Yonglin Yang ◽  
Feifei Li ◽  
Sa Xiao

Water samples from rainfall, river, springs, and wells in the Xianshui River fault region near Xialatuo, China were collected during two sampling campaigns to investigate the complex groundwater circulation in the region. The major ions, stable isotopes, and four natural radium isotopes of the water samples were analyzed, and the results were utilized to identify different groundwater circulation depths. Most water samples excluding the one at a hot spring and the one at a borehole possess similar hydrochemical compositions and lower total dissolved solids (TDS), implying that their circulation depth is relatively shallow or that residence time is short. The sample at the hot spring has high TDS and high temperature as well as the high F concentration, inferring that it may circulate at a deeper depth. The sample at the borehole contains mixed hydrochemical characteristics of other samples. Three groundwater flow systems may exist in the study area: the shallow groundwater system recharged by precipitations and local groundwater flow, the deep groundwater system recharged by the regional groundwater flow, and the intermediate one between the above two systems. The finding of the three flow systems is supported by the δ2H and δ18O as well as the apparent radium ages of the samples. The δ2H and δ18O values at the intercept of the line formed by the shallow groundwater samples and the local meteoric water line (LMWL) are similar to those of modern precipitations. The δ2H and δ18O values at the intercept of the line formed by the deep groundwater samples and the LMWL show that it is probably recharged by relatively older precipitations. The 2H and 18O values of the borehole samples are between the above two intercept points. The deep-circulated groundwater with high temperature has longer apparent radium age than other water samples. The apparent radium ages of the shallow groundwater are similar but less than that of the deep groundwater. Groundwater at the borehole may circulate at a depth between the above two. The results of this study improve our understanding of the complex groundwater circulation and enable us to better protect and manage the groundwater resources in the region.


2019 ◽  
Vol 51 (1) ◽  
pp. 54 ◽  
Author(s):  
Muryanto Muryanto ◽  
Suntoro Suntoro ◽  
Totok Gunawan ◽  
Prabang Setyono ◽  
Afid Nurkholis ◽  
...  

The nitrate concentrations in shallow groundwater of the Yogyakarta City and its surroundings has increased to about twenty times in the period 1985-2018. The objective of this study was to analyse the distribution of nitrate concentrations in water well around the Code River, Yogyakarta. Flownets mapping was performed to find out the distribution and direction of potential groundwater pollution. Nitrate concentration was analysed by taking 18 groundwater samples scattered in the upstream, midstream and downstream areas of the Code River. The results of this study indicate that nitrate concentrations in the water well of upstream and downstream areas could still be used as a source of drinking water and recreation-irrigation-livestock. Meanwhile, the nitrate concentration in water well of the midstream area of the Code River, Yogyakarta City, mostly (80% of the sample) did not meet all classes of water quality standards. Human activities in the densely populated settlements were the main factors that influence nitrate pollution. Furthermore, groundwater flow in the study area leads from north to south and towards the Code River. This condition indicates that the nitrate concentrations in  the groundwater can be a source of a pollutant for the Code River.


1986 ◽  
Vol 21 (3) ◽  
pp. 351-367 ◽  
Author(s):  
Michael Sklash ◽  
Sharon Mason ◽  
Suzanne Scott ◽  
Chris Pugsley

Abstract We used seepage meters and minipiezometers to survey a 100 m by 7 km band of streambed of the St. Clair River near Sarnia, Ontario, Canada, to determine the quantity, quality, and sources of groundwater seepage into the river. The average observed seepage rate, 1.4 x 10−8 m3/s/m2, suggests higher than expected hydraulic conductivities and/or hydraulic gradients in the streambed. We found detectable levels of some organic contaminants in streambed groundwater samples from 1.0 and 1.5 m depths, however , concentrations did not exceed drinking water guidelines. Our isotopic and electrical conductivity data indicate that: (l) the streambed groundwater is not just river water, (2) groundwater from the “freshwater aquifer” at the base of the overburden Is not a significant component of the streambed groundwater, (3) some of the streambed groundwater is partially derived from a shallow groundwater flow system, and (4) an unidentified source of water with low tritium, river water-like δ18O, and very high electrical conductivity, contributes to the streambed groundwater.


2018 ◽  
Vol 42 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Shahpara Sheikh Dola ◽  
Khairul Bahsar ◽  
Mazeda Islam ◽  
Md Mizanur Rahman Sarker

Attempt has been made to find the relationship between the basin groundwater flow and the current water chemistry of south-western part of Bangladesh considering their lithological distribution and aquifer condition. The correlation of water chemistry and basin groundwater flow is depicted in the conceptual model. The water-types of shallow groundwater are predominantly Mg-Na-HCO3 and Ca- Mg-Na-HCO3 type. In the deep aquifer of upper delta plain is predominately Na-Cl, Ca-HCO3 and Mg- HCO3 type. In the lower delta plain Na-Cl type of water mainly occurs in the shallow aquifer and occasionally Ca-HCO3, Ca-Mg-Na-HCO3 and Mg-HCO3 type may also occur in shallow aquifer of the eastern part of lower delta plain which could have originated from the recent recharge of rain water. Na- Cl type water is also found in the deep aquifer of lower delta plain. The origin of Na-Cl type water in the deep aquifer of lower delta part might be connate water or present day sea water intrusion. Fresh water occurring in the deep aquifer in the lower delta area is mostly of Mg-Ca-HCO3 and Na-HClO3 types. This type of water originate from intermediate or deep basin flow from the northern part of Bangladesh. The probable source of deep groundwater is Holocene marine transgression (Khan et al. 2000) occurred in 3000–7000 cal years BP and the deep groundwater of Upper Delta plain and Lower Delta plain is clearly influenced by deep basin flow coming from north part of BangladeshJournal of Bangladesh Academy of Sciences, Vol. 42, No. 1, 41-54, 2018


Geophysics ◽  
1994 ◽  
Vol 59 (2) ◽  
pp. 192-201 ◽  
Author(s):  
P. A. White

The movement of 2000 liters of salt water after injection into groundwater within gravels a few meters below the ground surface at three injection sites was traced by six different resistivity monitoring arrays; the resistivity rectangle, Schlumberger sounding, Wenner sounding, Wenner fixed‐spacing, mise‐à‐la‐asse and downhole electrode array. Five of the arrays indicated groundwater flow direction and seepage velocity. As evidence indicates, similar geological and hydrogeological conditions exist at the injection sites. Therefore, comparisons between the sensitivity of the five arrays can be made and are as follows: resistivity rectangle—maximum decrease of 60 percent in derived potential differences; Schlumberger sounding— maximum decrease of 28 percent in measured apparent resistivity; Wenner sounding—maximum decrease of 20 percent in measured apparent resistivity, Wenner fixedspacing—maximum decrease of 22 percent in apparent resistivity; downhole electrode—maximum decrease of 38 percent in measured resistance. Measured potentials and derived values of potential gradient measured by the mise‐à‐la‐masse array indicated groundwater flow direction but not seepage velocity. Estimates of seepage velocity given by the resistivity arrays for the three salt water injection sites are between 260 ± 40 m/day and 700 ±100 m/day. These estimates are in broad agreement with values of seepage velocity derived from the point‐dilution technique, from previous salt water injection experiments, and from groundwater conductivity measurements using downhole probes.


Geophysics ◽  
1994 ◽  
Vol 59 (7) ◽  
pp. 1172-1172 ◽  

The author has noted an equation error in Fig. 2. The vertical anisotropic intrinsic permeability should be: [Formula: see text] In addition, a reference used in the paper was incomplete. The accurate information appears below and we regret the omission.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3426
Author(s):  
Haipeng Guo ◽  
Muzi Li ◽  
Lu Wang ◽  
Yunlong Wang ◽  
Xisheng Zang ◽  
...  

Groundwater is an irreplaceable resource for irrigation and drinking in the North China Plain, and the quality of groundwater is of great importance to human health and social development. In this study, using the information from 59 groups of groundwater samples, groundwater quality conditions for irrigation and drinking purposes in an agricultural region of the North China Plain were analyzed. The groundwater belongs to a Quaternary loose rock pore water aquifer. The depths of shallow groundwater wells are 20–150 m below the surface, while the depths of deep groundwater wells are 150–650 m. The sodium adsorption ratio (SAR), sodium percentage (%Na), residual sodium carbonate (RSC), magnesium hazard (MH), permotic index (PI) and electrical conductivity (EC) were selected as indexes to evaluate the shallow groundwater suitability for irrigation. What’s more, the deep groundwater suitability for drinking was assessed and the human health risk of excessive chemicals in groundwater was studied. Results revealed that SAR, Na% and RSC indexes indicated the applicability of shallow groundwater for agricultural irrigation in the study area. We found 57.1% of the shallow groundwater samples were located in high salinity with a low sodium hazard zone. The concentrations of fluorine (F−) in 79.0% of the deep groundwater samples and iodine (I−) in 21.1% of the deep groundwater samples exceeded the permissible limits, respectively. The total hazard quotient (HQ) values of fluorine in over half of the deep groundwater samples exceeded the safety limits, and the health risk degree was ranked from high to low as children, adult females and adult males. In addition to natural factors, the soil layer compression caused by groundwater over-exploitation increased the fluorine concentration in groundwater. Effective measures are needed to reduce the fluorine content of the groundwater of the study area.


2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Saadu Umar Wali ◽  
Kabiru Jega Umar ◽  
Sheikh Danjuma Abubakar ◽  
Ifatokun Paul Ifabiyi ◽  
Ibrahim Mustapha Dankani ◽  
...  

Abstract Groundwater under Basement Complex areas of southern Kebbi has been characterized in order to determine its suitability for drinking and irrigation use. Water samples were drawn from shallow groundwater (hand-dug shallow wells < 5 m) and deep groundwater (boreholes > 40 m). Physical parameters (i.e., temperature, TDS, pH, and EC), were determined in situ, using handheld meters. Discrete water samples were obtained for determination of chemical parameters. Results from several-sample ANOVA (Kruskal–Wallis test) suggested that heterogeneity in water table appeared to exert significant influence on groundwater chemistry which is characterized by a significant difference in pH, EC TH, Na+, Zn2+, Mg2+, PO43−, Cl−, HCO3−, SO42−, and NO3− concentrations. Also, ions including Fe3+, Zn2+, Mg2+, Na+, PO43−, and SO42− are above World Health Organization (2011) and National Standard for Drinking Water Quality (2007) reference guidelines. Most of the groundwater sources are moderately hard. Groundwater classification based on chloride, EC, and TDS revealed water of excellent quality for all types of uses. However, groundwater classification based on nitrate pollution revealed water of poor quality. Rock mineral is the major mechanism controlling water chemistry, as revealed by the Gibbs model. Most of the water sources have positive Scholler index, indicative of overall base exchange reactions in the underlying aquifers. Such condition was well explained by Piper trilinear diagram, which revealed two types of faces: Ca–Mg–HCO3 and Ca–Mg–SO4–Cl. The HCA categorized wells into three groups according to their hydrogeochemical physiognomies. Despite the significant difference in ions concentration and chemical indices, groundwater composition is more influenced by rock weathering than anthropogenic inputs. Groundwater evaluation for irrigation use indicates a significant difference in SAR level which is related to poor permeability index in shallow groundwater. Higher values of Kelly’s index and magnesium adsorption ratio threatened groundwater suitability for irrigation use in the study area.


Sign in / Sign up

Export Citation Format

Share Document