scholarly journals Experimental study of anisotropic constitutive behavior of β-HMX crystals via nanoindentation and small-scale dynamic impact

2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Ayotomi Olokun ◽  
Tyler Dillard ◽  
Abhijeet Dhiman ◽  
Vikas Tomar

AbstractFor energetic crystals such as HMX, the sensitivity of the material to shock, the possibility of initiation, and the subsequent reaction is known to be controlled by processes occurring at the crystal level. The anisotropic nature of β-HMX can be critical in determining the performance of HMX based polymer bonded explosives, which are widely used across multiple industries as propellant or explosives. In this work, we experimentally obtain constitutive parameters for characterizing the response of multiple crystalline planes of β-HMX crystals to external loading. Nanoindentation and small-scale dynamic impact experiments were performed on multiple planes of β-HMX crystals to comparatively measure the indentation moduli in multiple orientation directions. Anisotropic material behavior, involving constitutive elastic and non-elastic parameters, was measured and studied. Findings regarding material properties for the (100), (010), (001), {110}, and {011} planes of β-HMX are presented and compared with literature data.

Author(s):  
Ines Gilch ◽  
Tobias Neuwirth ◽  
Benedikt Schauerte ◽  
Nora Leuning ◽  
Simon Sebold ◽  
...  

AbstractTargeted magnetic flux guidance in the rotor cross section of rotational electrical machines is crucial for the machine’s efficiency. Cutouts in the electrical steel sheets are integrated in the rotor sheets for magnetic flux guidance. These cutouts create thin structures in the rotor sheets which limit the maximum achievable rotational speed under centrifugal forces and the maximum energy density of the rotating electrical machine. In this paper, embossing-induced residual stress, employing the magneto-mechanical Villari effect, is studied as an innovative and alternative flux barrier design with negligible mechanical material deterioration. The overall objective is to replace cutouts by embossings, increasing the mechanical strength of the rotor. The identification of suitable embossing geometries, distributions and methodologies for the local introduction of residual stress is a major challenge. This paper examines finely distributed pyramidal embossings and their effect on the magnetic material behavior. The study is based on simulation and measurements of specimen with a single line of twenty embossing points performed with different punch forces. The magnetic material behavior is analyzed using neutron grating interferometry and a single sheet tester. Numerical examinations using finite element analysis and microhardness measurements provide a more detailed understanding of the interaction of residual stress distribution and magnetic material properties. The results reveal that residual stress induced by embossing affects magnetic material properties. Process parameters can be applied to adjust the magnetic material deterioration and the effect of magnetic flux guidance.


Author(s):  
Onome Scott-Emuakpor ◽  
Tommy George ◽  
Emily Henry ◽  
Casey Holycross ◽  
Jeff Brown

The as-built material behavior of additive manufactured (AM) Titanium (Ti) 6Al-4V is investigated in this study. A solution heat treated, aged, stress relieved, and hot isostatic pressed Laser Powder Bed Fusion (LPBF) AM process was used to manufacture the specimens of interest. The motivation behind this work is based on the ever-growing desire of aerospace system designers to use AM to fabricate components with novel geometries. Specifically, there is keen interest in AM components with complex internal cooling configurations such as turbine blades, nozzle vanes, and heat exchangers that can improve small scale propulsion performance. Though it is feasible to three-dimensionally print parts that meet the Fit portion of a part characteristic description and identification, the Form and Function portions have proven to be more difficult to conquer. This study addresses both the Form and Function characteristics of the LPBF AM process via the investigation of geometry variation and surface roughness effects pertaining to mechanical properties and fatigue behavior of Ti 6Al-4V. Results show that geometry variation may be the cause of increased vibration fatigue life uncertainty. Also, both fatigue and tensile properties show profound discrepancies associated with surface finish. As-built surface finish specimens have lower fatigue and ductility performance, but the results are more consistent than polished data.


2018 ◽  
Vol 35 (4) ◽  
pp. 441-454 ◽  
Author(s):  
M. Shishesaz ◽  
M. Hosseini

ABSTRACTIn this paper, the mechanical behavior of a functionally graded nano-cylinder under a radial pressure is investigated. Strain gradient theory is used to include the small scale effects in this analysis. The variations in material properties along the thickness direction are included based on three different models. Due to slight variations in engineering materials, the Poisson’s ratio is assumed to be constant. The governing equation and its corresponding boundary conditions are obtained using Hamilton’s principle. Due to the complexity of the governed system of differential equations, numerical methods are employed to achieve a solution. The analysis is general and can be reduced to classical elasticity if the material length scale parameters are taken to be zero. The effect of material indexn, variations in material properties and the applied internal and external pressures on the total and high-order stresses, are well examined. For the cases in which the applied external pressure at the inside (or outside) radius is zero, due to small effects in nano-cylinder, some components of the high-order radial stresses do not vanish at the boundaries. Based on the results, the material inhomogeneity indexn, as well as the selected model through which the mechanical properties may vary along the thickness, have significant effects on the radial and circumferential stresses.


2005 ◽  
Vol 127 (1) ◽  
pp. 134-147 ◽  
Author(s):  
Daniel R. Einstein ◽  
Karyn S. Kunzelman ◽  
Per G. Reinhall ◽  
Mark A. Nicosia ◽  
Richard P. Cochran

Background : Many diseases that affect the mitral valve are accompanied by the proliferation or degradation of tissue microstructure. The early acoustic detection of these changes may lead to the better management of mitral valve disease. In this study, we examine the nonstationary acoustic effects of perturbing material parameters that characterize mitral valve tissue in terms of its microstructural components. Specifically, we examine the influence of the volume fraction, stiffness and splay of collagen fibers as well as the stiffness of the nonlinear matrix in which they are embedded. Methods and Results: To model the transient vibrations of the mitral valve apparatus bathed in a blood medium, we have constructed a dynamic nonlinear fluid-coupled finite element model of the valve leaflets and chordae tendinae. The material behavior for the leaflets is based on an experimentally derived structural constitutive equation. The gross movement and small-scale acoustic vibrations of the valvular structures result from the application of physiologic pressure loads. Material changes that preserved the anisotropy of the valve leaflets were found to preserve valvular function. By contrast, material changes that altered the anisotropy of the valve were found to profoundly alter valvular function. These changes were manifest in the acoustic signatures of the valve closure sounds. Abnormally, stiffened valves closed more slowly and were accompanied by lower peak frequencies. Conclusion: The relationship between stiffness and frequency, though never documented in a native mitral valve, has been an axiom of heart sounds research. We find that the relationship is more subtle and that increases in stiffness may lead to either increases or decreases in peak frequency depending on their relationship to valvular function.


Author(s):  
Tomas Nicak ◽  
Herbert Schendzielorz ◽  
Elisabeth Keim ◽  
Gottfried Meier

This paper describes numerical and experimental investigations on transferability of material properties obtained by testing of small scale specimens to a real component. The presented study is related to the experimental and analytical work performed on Mock-up3, which is one of three unique large scale Mock-ups tested within the European project STYLE. Mock-up3 is foreseen to investigate transferability of material data, in particular fracture mechanics properties. An important part of this work is to study constraint effects on different small scale specimens and to compare their fracture behaviour with the fracture behaviour of a large scale (component like) structure. The Mock-Up3 is an original part of a surge line made of low alloy steel 20 MnMoNi 5 5 (which corresponds to SA 508 Grade 3, Cl. 1). The goal of the test is to introduce stable crack growth of an inner surface flaw until a break through the wall occurs. To design such a test reliable fracture mechanics material properties must be available. Usually, these material data are obtained by testing small specimens, which are subsequently used for the assessment of a large scale structure (component). This is being done under the assumption that these “small scale” material properties are fully transferable to “large scale” components. It is assumed that crack initiation in the ductile tearing regime is rather independent of the crack shape, a/W ratio, loading condition or size of the specimen (constraint effects). In order to check the aforementioned assumption and to improve understanding of the physical process leading to failure of cracked components comprehensive experimental and analytical work is being undertaken in STYLE. This paper summarizes Up-To-Date available results, which have been achieved during the first 15 months of the project.


Author(s):  
Gifford Plume ◽  
Carl-Ernst Rousseau

Abstract The spall strength of cast iron has been investigated by means of planar plate impact experiments conducted in a vacuum. A single stage gas gun was utilized to drive projectiles to velocities between 100 and 300 m/sec, resulting in low to moderate shock loading of the cast iron specimens. Measurement of the stress histories were made with the use of commercial manganin stress gauges that were imbedded between the back face of the cast iron specimen and a low impedance backing of polycarbonate. Spall strength values were calculated utilizing the measured peak stress and minimum stress pullback signals captured in the stress history. Spall Strength values were found to vary between 0.98 and 1.45 GPa for the cast iron tested. Post-Mortem analysis of recovered specimen has provided insight into the evolution of spall failure in cast iron and shed light on the varying nature of the spall strength values calculated. It was determined that the lower bound of strength values was associated with small scale micro-failure, while the upper bound values corresponded to complete spall fracture.


Author(s):  
Wei Huang ◽  
Robert L. Jackson

Surface asperities can range widely in size. Therefore it is important to characterize the effect of size and scale on the contact mechanics. This work presents a molecular model of asperity contact in order to characterize small scale asperity contact. The model is also compared to existing continuum mechanics based models developed originally by Hertz for elastic contact and later expanded by others to include plasticity. It appears that the predictions can be related to each other and that the continuum material properties can be related to the properties describing the molecular forces.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1935 ◽  
Author(s):  
Mohammad Malikan ◽  
Victor A. Eremeyev ◽  
Krzysztof Kamil Żur

We investigated the stability of an axially loaded Euler–Bernoulli porous nanobeam considering the flexomagnetic material properties. The flexomagneticity relates to the magnetization with strain gradients. Here we assume both piezomagnetic and flexomagnetic phenomena are coupled simultaneously with elastic relations in an inverse magnetization. Similar to flexoelectricity, the flexomagneticity is a size-dependent property. Therefore, its effect is more pronounced at small scales. We merge the stability equation with a nonlocal model of the strain gradient elasticity. The Navier sinusoidal transverse deflection is employed to attain the critical buckling load. Furthermore, different types of axial symmetric and asymmetric porosity distributions are studied. It was revealed that regardless of the high magnetic field, one can realize the flexomagnetic effect at a small scale. We demonstrate as well that for the larger thicknesses a difference between responses of piezomagnetic and piezo-flexomagnetic nanobeams would not be significant.


Author(s):  
S.K. Lakhanpal

Modern Technology has required a continuous search for better materials. Hence, the desire among engineers to study the material properties rigorously. Throughout the literature, the concept of load transfer is based on linear stresses. However, the material behavior is better defined when load transfer is considered to be by couple stresses, in addition to linear stresses. The strain energy expression is an important tool for the study of the material. With this in mind, an expression with couple stresses included is developed.


Author(s):  
Carl E. Jaske

This paper reviews the metallurgy and behavior of centrifugally cast heat-resistant alloys for ammonia, methanol, and hydrogen reformer furnaces. The alloys include HK and HP, as well as proprietary versions of these materials produced by various foundries. Alloying and metallurgical factors that affect resistance to oxidation, carburization, and high temperature creep are discussed. Examples of the effects of environment and temperature on material behavior are provided. Finally, the use of material properties to predict the long-term performance of reformer furnace components is reviewed.


Sign in / Sign up

Export Citation Format

Share Document