scholarly journals Effect of Axial Porosities on Flexomagnetic Response of In-Plane Compressed Piezomagnetic Nanobeams

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1935 ◽  
Author(s):  
Mohammad Malikan ◽  
Victor A. Eremeyev ◽  
Krzysztof Kamil Żur

We investigated the stability of an axially loaded Euler–Bernoulli porous nanobeam considering the flexomagnetic material properties. The flexomagneticity relates to the magnetization with strain gradients. Here we assume both piezomagnetic and flexomagnetic phenomena are coupled simultaneously with elastic relations in an inverse magnetization. Similar to flexoelectricity, the flexomagneticity is a size-dependent property. Therefore, its effect is more pronounced at small scales. We merge the stability equation with a nonlocal model of the strain gradient elasticity. The Navier sinusoidal transverse deflection is employed to attain the critical buckling load. Furthermore, different types of axial symmetric and asymmetric porosity distributions are studied. It was revealed that regardless of the high magnetic field, one can realize the flexomagnetic effect at a small scale. We demonstrate as well that for the larger thicknesses a difference between responses of piezomagnetic and piezo-flexomagnetic nanobeams would not be significant.

1990 ◽  
Vol 57 (4) ◽  
pp. 1056-1060 ◽  
Author(s):  
Mauro Pierucci ◽  
Pedro G. Morales

The stability behavior, the stress, and velocity distributions for a plane Poiseuille flow bounded by a finite thickness elastic layer is studied. The analysis is performed by utilizing the coupled relationships between the Orr-Sommerfeld stability equation for the fluid and the Navier equations for the solid. The numerical instabilities experienced in the solution of the Orr-Sommerfeld equation have been overcome with the use of Davey’s orthonormalization technique. This study focuses only on the Tollimen-Schlichting instabilities. This mode is the most unstable of the three different types of instabilities. The results show that certain combinations of parameters can lead to improved stability conditions. Under these conditions the normal and shear stress distributions may behave completely different in certain regions of the fluid.


1988 ◽  
Vol 1 (21) ◽  
pp. 151
Author(s):  
K.W. Pilarczyk

The increasing shortage and costs of natural materials in certain geographical areas has resulted in recent years, inter alia, in the rapid development of artificial (concrete) block revetments. In general, two main types of revetments can be distinguished: permeable (stone pitching, placed relatively open block-mats) and (relatively-) impermeable (closed blocks, concrete slabs). Regarding the shape and/or placing technique a distinction can be made between: a) free (mostly rectangular-) blocks and b) interlocking blocks of different design (tongue-and-groove connection, ship- lap, cabling, blocks connected to geotextile by pins etc.). In all these cases the type of sublayer (permeable/impermeable) and the grade of permeability of the toplayer are very important factors in the stability of these revetments. The design also needs to be made (executed) and maintained. Both aspects must therefore already be taken along within the stadium of designing. At the moment there is a large variety of types of revetment-blocks and other defence systems (i.e. block-mats), see Fig. 1. Until recently no objective design-criteria were available for most types/systems of blocks. The choice (type and size) of the revetments built sofar is only based on experience and on personal points of view, sometimes supported by small-scale model investigations. In the light of new (stricter) rules regarding the safety of the Dutch dikes, as they have been drawn up by the Delta-Commission, the need for proper design-criteria for the revetments of dikes has evidently grown. Because of the complexity of the problem no simply, generally valid mathematical model for the stability of the revetment are available yet. For restricted areas of application however, fairly reliable criteria (often supported by large-scale tests) have been developed in the Netherlands not only for the kind of revetment, but also for conditions of loads. This new approach is discussed in (Klein Breteler, 1988). This paper presents a short state-of-the-art review of existing knowledge on the designing of different types of revetments and, where ever possible, the available stability criteria are mentioned. There is also given some comparison of the different types of revetments with their advantages and disadvantages and suggestions regarding their practical application.


2020 ◽  
Vol 37 (3) ◽  
pp. 83-90
Author(s):  
T.Z. Mutallapov ◽  

The article presents the results of evaluating the growth of Scots pine in the Baymak forest area. The analysis of forestry and taxation indicators of Scots pine crops on the studied sample areas is carried out, and a comparative assessment of the growth of forest crops growing in different types of forest is given. Increased competition in plantings leads to the natural decline of stunted trees, which is the result of differentiation in the stand. As a result, its structure changes, the number of large trees increases, and, accordingly, the stability of the forest ecosystem increases. In this regard, the appearance of the tree distribution curve by thickness levels also changes. It becomes more "flat", and its competitive load is more evenly distributed over the entire structure of the stand, and competition is weakened.


2019 ◽  
Vol 14 (1) ◽  
pp. 52-58 ◽  
Author(s):  
A.D. Nizamova ◽  
V.N. Kireev ◽  
S.F. Urmancheev

The flow of a viscous model fluid in a flat channel with a non-uniform temperature field is considered. The problem of the stability of a thermoviscous fluid is solved on the basis of the derived generalized Orr-Sommerfeld equation by the spectral decomposition method in Chebyshev polynomials. The effect of taking into account the linear and exponential dependences of the fluid viscosity on temperature on the spectral characteristics of the hydrodynamic stability equation for an incompressible fluid in a flat channel with given different wall temperatures is investigated. Analytically obtained profiles of the flow rate of a thermovisible fluid. The spectral pictures of the eigenvalues of the generalized Orr-Sommerfeld equation are constructed. It is shown that the structure of the spectra largely depends on the properties of the liquid, which are determined by the viscosity functional dependence index. It has been established that for small values of the thermoviscosity parameter the spectrum compares the spectrum for isothermal fluid flow, however, as it increases, the number of eigenvalues and their density increase, that is, there are more points at which the problem has a nontrivial solution. The stability of the flow of a thermoviscous fluid depends on the presence of an eigenvalue with a positive imaginary part among the entire set of eigenvalues found with fixed Reynolds number and wavenumber parameters. It is shown that with a fixed Reynolds number and a wave number with an increase in the thermoviscosity parameter, the flow becomes unstable. The spectral characteristics determine the structure of the eigenfunctions and the critical parameters of the flow of a thermally viscous fluid. The eigenfunctions constructed in the subsequent works show the behavior of transverse-velocity perturbations, their possible growth or decay over time.


2019 ◽  
Vol 14 (3) ◽  
pp. 211-225 ◽  
Author(s):  
Ming Fang ◽  
Xiujuan Lei ◽  
Ling Guo

Background: Essential proteins play important roles in the survival or reproduction of an organism and support the stability of the system. Essential proteins are the minimum set of proteins absolutely required to maintain a living cell. The identification of essential proteins is a very important topic not only for a better comprehension of the minimal requirements for cellular life, but also for a more efficient discovery of the human disease genes and drug targets. Traditionally, as the experimental identification of essential proteins is complex, it usually requires great time and expense. With the cumulation of high-throughput experimental data, many computational methods that make useful complements to experimental methods have been proposed to identify essential proteins. In addition, the ability to rapidly and precisely identify essential proteins is of great significance for discovering disease genes and drug design, and has great potential for applications in basic and synthetic biology research. Objective: The aim of this paper is to provide a review on the identification of essential proteins and genes focusing on the current developments of different types of computational methods, point out some progress and limitations of existing methods, and the challenges and directions for further research are discussed.


1. Introduction and Summary. —This paper deals with the elastic stability of a circular annular plate under uniform shearing forces applied at its edges. Investigations of the stability of plane plates are altogether simpler than those necessary in the case of curved plates or shells. In the first place, as shown by Mr. R. V. Southwell, two of the three equations of stability relate to a mode of instability that is not of practical interest, and are entirely independent of the third equation which gives the ordinary mode of instability resulting in the familiar bending of the middle surface of the plate. Consequently with a plane plate there is only one equation of stability to be solved, as contrasted with the case of a shell where the three equations are dependent, and must all be solved. In the second place the theory of thin shells can be used with confidence in a plane plate problem, though a more laborious procedure is necessary to deal adequately with a shell. The only stability equation required for the annular plate is therefore deduced without trouble from the theory of thin shells, and its solution presents no difficulty in the case of uniform shearing forces. A numerical discussion is given of the stability of the plate under such forces, the “favourite type of distortion” and the stess that will produce it being obtained for plates with clamped edges in wich the ratio of the outer to the inner radius exceeds 3·2. To some extent to results have been checked by experiment, in which part of the work the viter is indebted to Prof. G. I. Taylor for his valuable help and advice. Distrtion of the type predicted by the theory took place in the two thin plates of rober different ratio of radii, which were used. The disposition of the loci of points which undergo maximum normal displace nt gives some idea of the appearance of the plate after distortion has taken pce. The points have been calculated for a plate in which the ratio of radii 4·18, and the loci are shown on a diagram, which may be compared with a potograph of a distorted plate in which this ratio is 4·3. The ratio of normal dplacements of points of the plate can be seen from contours drawn on the ne diagram. (See pp. 280, 281.)


Author(s):  
Marzia S Vaccaro ◽  
Francesco P Pinnola ◽  
Francesco Marotti de Sciarra ◽  
Marko Canadija ◽  
Raffaele Barretta

In this research, the size-dependent static behaviour of elastic curved stubby beams is investigated by Timoshenko kinematics. Stress-driven two-phase integral elasticity is adopted to model size effects which soften or stiffen classical local responses. The corresponding governing equations of nonlocal elasticity are established and discussed, non-classical boundary conditions are detected and an effective coordinate-free solution procedure is proposed. The presented mixture approach is elucidated by solving simple curved small-scale beams of current interest in Nanotechnology. The contributed results could be useful for design and optimization of modern sensors and actuators.


Author(s):  
P. G. Drazin

ABSTRACTSome aspects of generation of water waves by wind and of turbulence in a heterogeneous fluid may be described by the theory of hydrodynamic stability. The technical difficulties of these problems of instability have led to obscurities in the literature, some of which are elucidated in this paper. The stability equation for a basic steady parallel horizontal flow under the influence of gravity is derived carefully, the undisturbed fluid having vertical variations of density and viscosity. Methods of solution of the equation for large Reynolds numbers and for long-wave disturbances are described. These methods are applied to simple models of wind blowing over water and of fresh water flowing over salt water.


Sign in / Sign up

Export Citation Format

Share Document