Optimization of growing conditions, substrate-types and their concentrations for acclimatization and post-acclimatization growth of in vitro-raised flame lily (Gloriosa superba L.) plantlets

Author(s):  
Ashok Kumar Khandel ◽  
Saikat Gantait ◽  
Sandeep Kumar Verma
2019 ◽  
pp. 57-67
Author(s):  
T.M. Tabatskaya ◽  
N.I. Vnukova

A technique for the long-term (up to 27 years) in vitro storage of valuable birch genotypes under normal (25 °C, 2.0 klx, 16-h day and 8-h night) and low temperature (4 °C, 0.5 klx, 6-h day and 18-h night) growing conditions on hormone-free media has been described. The study explored for the first time the influence of different strategies to store the clones of Betula pubescens and B. pendula var. сarelica (6 genotypes) on the regenerative capacity of collection samples, adaptive potential of regenerated plants and plant production by the in vitro and ex vitro techniques. It was established that both storage strategies provided a persistently high survival rate (82-100%) and regenerative capacity of in vitro shoots (the multiplication coefficient of 4.2-6.3 and rhizogenic activity of 90-100%). The clones retained their characteristics of height growth under the in vitro and ex vitro conditions, and demonstrated intraclonal homogeneity and lack of signs of somaclonal variability. The plants showed substantial interspecific differences at the stage of multiplication and transfer to the greenhouse. The highest percentage of acclimated plants (75-98% depending on the clone genotype) was obtained after planting of micro plants straight in the greenhouse, which simplified the technology and made plant production less costly. long-term in vitro storage, birch, species, genotype, micropropagation, ex vitro adaptation, plant material


2018 ◽  
Vol 23 (1) ◽  
pp. 89
Author(s):  
Augusta Yadira Cueva-Agila ◽  
Rino Cella

Protocorms are unique anatomical structures; they are akin to rhizoids and are formed by young orchid seedlings under physiological conditions. Explanted orchid tissues produce similar structures called protocorm-like bodies (PLBs) when exposed to appropriate <em>in vitro</em> growing conditions. Both the propagative nature of PLBs and the easiness by which they can be generated, make these structures an attractive alternative to seed-mediated production for growing large numbers of plants. To increase somatic embryogenesis and optimize the procedure, PLBs of <em>Cattleya maxima </em>were transformed<em> </em>using the <em>Agrobacterium tumefaciens </em>method. The T-DNA carried a Hygromycin-resistance gene, a visible marker (GFP5-GUSA) and a rice gene encoding the Somatic Embryogenesis Receptor Kinase, deemed to be important for somatic embryogenesis. Treated PLBs generated somatic embryos developing Hygromycin-resistant plantlets. The insertion of T-DNA was confirmed by PCR, and GFP expression was observed using a fluorescent stereomicroscope. Transformed <em>Cattleya maxima</em> PLBs were more efficient in forming somatic embryos (60-80%) than untransformed controls (45-57%), and this contrast was maximized in hormone-free, Murashige and Skoog (MS) medium (80% of the transformed plants compared to 57% of the untransformed ones). This finding supports the notion that SERK<em> </em>plays an important role in Orchid embryogenesis.


2018 ◽  
Vol 156 (4) ◽  
pp. 493-503 ◽  
Author(s):  
J. Pannecoucque ◽  
S. Goormachtigh ◽  
J. Ceusters ◽  
J. Debode ◽  
C. Van Waes ◽  
...  

AbstractBacterial inoculation of soybean seeds to improve biological nitrogen fixation is a well-known practice to achieve higher seed and protein yield with reduced fertilization. The optimal inoculation strategy in temperate regions is unknown because soybeans are rarely cultivated under colder growing conditions. The aim of the present work was to determine the most suitable inoculation strategy for soybean cultivation in Belgium. Field trials were set up with four Bradyrhizobium inoculants (HiStick, Force 48, Biodoz and Optimize) at two locations over 2 years (2014–2015) and compared with a non-inoculated control treatment. In addition, HiStick was tested at three doses and Optimize at two time periods prior to sowing. Under Belgian conditions, all inoculants were effective in establishing rhizobial symbiosis, resulting in increased yield, protein content, protein yield and thousand-grain weight compared with the non-inoculated control. A single dose of HiStick was sufficient to establish symbiosis. Pre-inoculation with Optimize 2 weeks before sowing gave an intermediate performance for most parameters between the non-inoculated control treatment and inoculation with Optimize 24 h prior to sowing. Among the four products tested, Biodoz seemed the best product for inoculation under cool growing conditions. Based on the atpD gene, the bacterial strain of Biodoz showed complete similarity with Bradyrhizobium diazoefficiens, while strains of other products were identified as Bradyrhizobium japonicum. In vitro growing capacity of the Biodoz strain at 8 °C was higher compared with the other strains. Better cold adaptation of the Biodoz strain might be a possible explanation for the better performance of Biodoz in Belgium.


2019 ◽  
Vol 5 (4) ◽  
pp. 92 ◽  
Author(s):  
Wall ◽  
Herrera ◽  
Lopez-Ribot

Background. Candida auris has spread rapidly around the world as a causative agent of invasive candidiasis in health care facilities and there is an urgent need to find new options for treating this emerging, often multidrug-resistant pathogen. Methods. We screened the Pathogen Box® chemical library for inhibitors of C. auris strain 0390, both under planktonic and biofilm growing conditions. Results. The primary screen identified 12 compounds that inhibited at least 60% of biofilm formation or planktonic growth. After confirmatory dose-response assays, iodoquinol and miltefosine were selected as the two main leading repositionable compounds. Iodoquinol displayed potent in vitro inhibitory activity against planktonic C. auris but showed negligible inhibitory activity against biofilms; whereas miltefosine was able to inhibit the growth of C. auris under both planktonic and biofilm-growing conditions. Subsequent experiments confirmed their activity against nine other strains C. auris clinical isolates, irrespective of their susceptibility profiles against conventional antifungals. We extended our studies further to seven different species of Candida, also with similar findings. Conclusion. Both drugs possess broad spectrum of activity against Candida spp., including multiple strains of the emergent C. auris, and may constitute promising repositionable options for the development of novel therapeutics for the treatment of candidiasis.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1531 ◽  
Author(s):  
Anuraga Jayanegara ◽  
Yogianto Yogianto ◽  
Elizabeth Wina ◽  
Asep Sudarman ◽  
Makoto Kondo ◽  
...  

The objective of this experiment was to test the effects of combining plant extracts rich in tannins and saponins at varying proportions on in vitro ruminal methane and ammonia formation. Tannins were extracted from Swietenia mahogani leaves and saponins from Sapindus rarak fruits with various solvents. The extracts obtained with the most efficient solvents (tannins: 75% water and 25% methanol; saponins: pure methanol) were then used in vitro. The treatments consisted of two substrate types (high-forage (HF) or high-concentrate (HC) diets) and five extract combinations (tannins: saponins, 1:0, 3:1, 1:1, 1:3, and 0:1) added at 2 mg/mL in incubation liquid. In vitro incubation was performed in four runs, with each treatment being represented with two replicates per run. The addition of plant extracts rich in tannins and saponins, either individually or in combination, decreased the methane proportion of total gas in both the HF (p < 0.05) and HC (p < 0.05) diets. The effects of the plant extracts rich in tannins and saponins were generally additive in mitigating methane emissions. Favorable associative effects between the extracts were observed in the ammonia concentration, both in the HF (p < 0.001) and HC (p < 0.01) diets and in the methane proportion of total gas, with a 1:3 mixture of tannins and saponins added to the HC diet (p < 0.05).


2000 ◽  
Vol 2000 ◽  
pp. 56-56
Author(s):  
J.W. Cone ◽  
A.H. van Gelder ◽  
A.A. Kamman ◽  
V.A. Hindle

The amount of rumen escape protein is commonly determined with the nylon bag technique. However, there is also an in vitro technique described using a protease of Streptomyces griseus (Aufrère et al., 1991; Cone et al., 1996), allowing systematical analysis of protein quality in a large number of samples. The aim of this study was to identify the influences of growing conditions on content of rumen escape protein in grass and grass silage and to investigate the relationships between rumen escape protein determined in vitro and in situ and chemical composition.


Sign in / Sign up

Export Citation Format

Share Document