Temperature as a key factor for successful inoculation of soybean with Bradyrhizobium spp. under cool growing conditions in Belgium

2018 ◽  
Vol 156 (4) ◽  
pp. 493-503 ◽  
Author(s):  
J. Pannecoucque ◽  
S. Goormachtigh ◽  
J. Ceusters ◽  
J. Debode ◽  
C. Van Waes ◽  
...  

AbstractBacterial inoculation of soybean seeds to improve biological nitrogen fixation is a well-known practice to achieve higher seed and protein yield with reduced fertilization. The optimal inoculation strategy in temperate regions is unknown because soybeans are rarely cultivated under colder growing conditions. The aim of the present work was to determine the most suitable inoculation strategy for soybean cultivation in Belgium. Field trials were set up with four Bradyrhizobium inoculants (HiStick, Force 48, Biodoz and Optimize) at two locations over 2 years (2014–2015) and compared with a non-inoculated control treatment. In addition, HiStick was tested at three doses and Optimize at two time periods prior to sowing. Under Belgian conditions, all inoculants were effective in establishing rhizobial symbiosis, resulting in increased yield, protein content, protein yield and thousand-grain weight compared with the non-inoculated control. A single dose of HiStick was sufficient to establish symbiosis. Pre-inoculation with Optimize 2 weeks before sowing gave an intermediate performance for most parameters between the non-inoculated control treatment and inoculation with Optimize 24 h prior to sowing. Among the four products tested, Biodoz seemed the best product for inoculation under cool growing conditions. Based on the atpD gene, the bacterial strain of Biodoz showed complete similarity with Bradyrhizobium diazoefficiens, while strains of other products were identified as Bradyrhizobium japonicum. In vitro growing capacity of the Biodoz strain at 8 °C was higher compared with the other strains. Better cold adaptation of the Biodoz strain might be a possible explanation for the better performance of Biodoz in Belgium.

Plant Disease ◽  
2005 ◽  
Vol 89 (7) ◽  
pp. 734-738 ◽  
Author(s):  
P. E. Rolshausen ◽  
W. D. Gubler

Eutypa dieback is a perennial canker disease of grapevine (Vitis vinifera) caused by Eutypa lata. The fungus produces ascospores, which infect grapevines through pruning wounds during the dormant season. Management of the disease has been achieved with fungicide applications during the dormant period. However, no effective fungicide was available for this purpose after Benlate was withdrawn from the market. Boric acid (17.5% a.i. boron), a potential alternative to Benlate, was tested in the present study against E. lata. The EC50 values for inhibition of mycelial growth and ascospore germination were 125 and 475 μg of boric acid per ml (22 and 83 μg a.i./ml), respectively. Two boron-based treatments were developed and tested in vitro and in four field trials during 2001 to 2003. One product, biopaste, contained 5% boric acid (8.75 mg a.i./ml) in a commercial paste. The second product, bioshield, contained 5% boric acid in a spore suspension of Cladosporium herbarum. Both products significantly reduced disease in vitro and in field trials in comparison with a water control treatment. Boron was not found to accumulate in leaves and shoots, but bud failure at the first node below the treated wound occurred at a higher rate than in untreated vines.


2015 ◽  
Vol 45 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Olivier Monteuuis ◽  
Doreen Kim Soh Goh

Teak (Tectona grandis L. f.) clonal forestry has lately become a reality thanks to the development of efficient techniques for mass clonally propagating true-to-type teak trees of various ages. Field trials were set up to assess the influence of teak genotypes of different ages and three clonal propagation techniques on field growth performances of teak clones. Significant differences (P < 0.0001) in height (H, from 11.9 to 17.5 m), diameter at breast height (D, from 11.8 to 18.9 cm), and volume (V, from 67.9 to 194.7 dm3) were observed 5 years after planting for clones produced by microcuttings from 6-month-old to 70-year-old teak ortets, regardless of their age. After 6.5 years of testing, H, D, and V performances of clones produced by rooted cuttings and microcuttings from 7-year-old teak trees were similar, notwithstanding clone × propagation method interactions. Five years after planting, clones produced by meristem culture from 7-year-old ortets had larger diameters and volumes than clones produced by microcuttings, whereas H varied according to clone × propagation method interaction. The various propagation methods used had no significant effect on mortality (<10%). The pros and cons of these techniques for mass clonally propagating teak genotypes of different ages were discussed.


2006 ◽  
Vol 290 (2) ◽  
pp. C650-C659 ◽  
Author(s):  
Karim R. Sultan ◽  
Birgit Henkel ◽  
Maarten Terlou ◽  
Henk P. Haagsman

Myofiber atrophy is the final outcome of muscle wasting induced by catabolic factors such as glucocorticoids and thyroid hormones. We set up an in vitro system to define the catabolic reaction based on myotube atrophy. Both mouse C2C12 and rat L6 cells were used. C2C12 myotube formation was improved by replacing horse serum with the serum substitute Ultroser G. A new method was developed to quantify size changes of large (0.5–1 mm) myotubes only, excluding remaining myoblasts and small myotubes. Dexamethasone reduced myotube size by 30% in L6 but not in C2C12 myotubes. Expression of the glucocorticoid receptor was twofold higher in L6 myotubes than in C2C12 myotubes. In both cell lines, 3,3′,5-triiodo-l-thyronine (T3) did not induce a significant size reduction. Expression of the major T3 receptor (T3Rβ1) was higher in L6 myotubes. We investigated whether the changes in myotube size are related to changes in atrogin-1 expression, as this enzyme is thought to be a key factor in the initiation of muscle atrophy. Dexamethasone induced a twofold increase of atrogin-1 mRNA; again, only L6 myotubes were susceptible. Interestingly, atrogin-1 expression in Ultroser G-fused C2C12 myotubes was lower than that in horse serum-fused myotubes. Furthermore, dexamethasone treatment increased atrogin-1 expression only in horse serum-fused myotubes but not in Ultroser G-fused myotubes. Ultroser G-induced fusion may result in atrophy-resistant C2C12 myotubes. Therefore, C2C12 myotubes offer an ideal system in which to study skeletal muscle atrophy because, depending on differentiation conditions, C2C12 cells produce atrophy-inducible and atrophy-resistant myotubes.


1998 ◽  
Vol 80 (09) ◽  
pp. 437-442 ◽  
Author(s):  
I. Hioki ◽  
K. Onoda ◽  
T. Shimono ◽  
H. Shimpo ◽  
K. Tanaka ◽  
...  

SummaryAlterations in platelet aggregability may play a role in the pathogenesis of qualitative platelet defects associated with cardiopulmonary bypass (CPB). We circulated fresh heparinized whole blood through tubing sets coated with heparin (C group, n = 10) and through non-coated sets (N group, n = 10) as a simulated CPB circuit. Shear stress (108 dyne/cm2)-induced platelet aggregation (hSIPA), plasma von Willebrand factor (vWF) activity and platelet glycoprotein (GP) Ib expression were measured, before, during, and after this in vitro set up of circulation. In the two groups, the extent of hSIPA significantly decreased during circulation and was partially restored after circulation. Decreases in the extent of hSIPA were significantly less with use of heparin-coated circuits. There was an equivalent reduction in plasma vWF activity, in the two groups. Expression of platelet surface GP Ib decreased significantly during circulation and recovered after circulation. Reduction of surface GP Ib expression during circulation was significantly less in the C group than that in the N group. Decrease in surface GP Ib expression correlated (r = 0.88 in either group) with the magnitude of hSIPA, in the two groups. The progressive removal of surface GP Ib was mainly attributed to redistribution of GP Ib from the membrane skeleton into the cytoskeleton. Our observations suggest that use of heparin-coated circuits partly blocks the reduction of hSIPA, as a result of a lesser degree of redistribution of GP Ib.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Growth regulators, phytohormones, both natural and artificial, are the main means to control plant ontogenesis. They are involved in regulating the processes of cell differentiation and cell divisions, the formation of tissues and organs, the changes in the rate of growth and development, the duration of the certain stages of ontogenesis. The main classes of phytohormones used in plant biotechnology, in particular, in the induction of haploid structures, are auxins and cytokinins. The mechanism of action of phytohormones on a cell is rather complicated and may have a different character. Understanding the characteristics of the action of phytohormones is complicated by the fact that the system of hormonal regulation of plant life is multicomponent. This is manifested in the fact that the same physiological process is most often influenced not by one, but by several phytohormones, covering a wide range of aspects of cell metabolism. In connection with the foregoing, the purpose of our work was to test a set of nutrient media with different basic composition and different proportions of phytohormones to determine the patterns of their influence on the processes of haploid structure induction in rape anther culture using accessions, developed at the Institute of Oilseed Crops NAAS. The material used was two accessions of winter rapeseed (No. 1 and No. 2) and one sample of spring rapeseed, provided by the Rapeseed Breeding laboratory of the Institute of Oilseed Crops. Incised inflorescences were kept against the background of low temperature of 6–8 ° C for several days, and then, under aseptic conditions, anthers with unripe pollen grains were isolated and planted on nutrient media differing in both basic mineral composition and content of phytohormones. MS (Murashige & Skoog 1962) and B5 (Gamborg et al 1968) media were used as basic media. Phytohormones were added to the basic media in various combinations – BA, 2,4-D, NAA at the concentrations of 0.1-0.6 mg/l. In each treatment up to 300 anthers were cultivated. Differences between treatments were evaluated using standard t-test. Studies have shown that in the anther culture of rapeseed on the tested nutrient media, morphogenic structures of different types (embryoids and callus) were originated. Synthetic auxin 2,4-D, regardless of the composition of the basic medium, caused the formation of structures of both types, though with a low frequency. Phytohormone BA of the cytokinin type had a similar effect. In this case, the frequency of structures was slightly higher, and the developed structures were represented mainly by embryoids. The joint action of cytokinin and auxin was the most favorable for the initiation of morphogenic structures. Such combination of phytohormones caused the formation of these structures with a frequency of 24.5-14.7% in the studied genotypes of winter rape. A similar effect of phytohormones on the induction and development of morphogenic structures was also observed in spring rape. In this case, a single basic MS medium was used. The experiment included treatments where phytohormones were absent (control), as well as various combinations of auxin and cytokinin. In the control treatment, the formation of new structures was not noted. In treatments with phytohormones, in addition to the medium with the combination of auxin and cytokinin, the medium in which only cytokinin was present was also rather effective. The treatment in which the action of auxin 2,4-D was combined with the action of another auxin, NAA, turned out to be practically ineffective. Thus, it was found that for the induction of morphogenic structures from microspores in rape anther culture of the tested genotypes, the combination of cytokinin with auxin, or the use of only single cytokinin BA without other phytohormones, had the most positive effect.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 504e-504
Author(s):  
Erika Szendrak ◽  
Paul E. Read ◽  
Jon S. Miller

Modern aspects of many subjects (e.g., computer science and some aspects of medical science) are now taught in many high schools, but the plant sciences are often given short shrift. A collaboration was therefore established with a high school biology program in which pilot workshops could be developed to enable advanced students to gain insights into modern plant science techniques. A successful example is the workshop on plant biotechnology presented in this report. This workshop is simple and flexible, taking into account that most high school biology laboratories and classrooms are not set up for sophisticated plant science/biotechnology projects. It is suitable for from 10 to 30 students, depending upon space and facilities available. Students work in pairs or trios, and learn simple disinfestation and transfer techniques for micropropagation and potential subsequent transformation treatments. Students gain insights into: sterile technique and hygiene; plant hormones and their physiological effects; plant cell, tissue and organ culture; the influence of environmental factors on response of cells and tissues cultured in vitro; and an understanding of the phenomenon of organogenesis and resulting plant growth and development. This workshop has been tested on several classes of students and following analysis, several refinements were included in subsequent iterations. Results of the students' experiments have been positive and instructive, with student learning outcomes above expectations. Further details of the workshop techniques and approach will be presented.


2019 ◽  
pp. 57-67
Author(s):  
T.M. Tabatskaya ◽  
N.I. Vnukova

A technique for the long-term (up to 27 years) in vitro storage of valuable birch genotypes under normal (25 °C, 2.0 klx, 16-h day and 8-h night) and low temperature (4 °C, 0.5 klx, 6-h day and 18-h night) growing conditions on hormone-free media has been described. The study explored for the first time the influence of different strategies to store the clones of Betula pubescens and B. pendula var. сarelica (6 genotypes) on the regenerative capacity of collection samples, adaptive potential of regenerated plants and plant production by the in vitro and ex vitro techniques. It was established that both storage strategies provided a persistently high survival rate (82-100%) and regenerative capacity of in vitro shoots (the multiplication coefficient of 4.2-6.3 and rhizogenic activity of 90-100%). The clones retained their characteristics of height growth under the in vitro and ex vitro conditions, and demonstrated intraclonal homogeneity and lack of signs of somaclonal variability. The plants showed substantial interspecific differences at the stage of multiplication and transfer to the greenhouse. The highest percentage of acclimated plants (75-98% depending on the clone genotype) was obtained after planting of micro plants straight in the greenhouse, which simplified the technology and made plant production less costly. long-term in vitro storage, birch, species, genotype, micropropagation, ex vitro adaptation, plant material


2020 ◽  
Vol 28 ◽  
Author(s):  
Justyna Hajtuch ◽  
Karolina Niska ◽  
Iwona Inkielewicz-Stepniak

Background: Cancer along with cardiovascular diseases are globally defined as leading causes of death. Importantly, some risk factors are common to these diseases. The process of angiogenesis and platelets aggregation are observed in cancer development and progression. In recent years, studies have been conducted on nanodrugs in these diseases that have provided important information on the biological and physicochemical properties of nanoparticles. Their attractive features are that they are made of biocompatible, well-characterized and easily functionalized materials. Unlike conventional drug delivery, sustained and controlled drug release can be obtained by using nanomaterials. Methods: In this article, we review the latest research to provide comprehensive information on nanoparticle-based drugs for the treatment of cancer, cardiovascular disease associated with abnormal haemostasis, and the inhibition of tumorassociated angiogenesis. Results: The results of the analysis of data based on nanoparticles with drugs confirm their improved pharmaceutical and biological properties, which gives promising antiplatelet, anticoagulant and antiangiogenic effects. Moreover, the review included in vitro, in vivo research and presented nanodrugs with chemotherapeutics approved by Food and Drug Administration. Conclusion: By the optimization of nanoparticles size and surface properties, nanotechnology are able to deliver drugs with enhanced bioavailability in treatment of cardiovascular disease, cancer and inhibition of cancer-related angiogenesis. Thus, nanotechnology can improve the therapeutic efficacy of the drug, but there is a need for a better understanding of the nanodrugs interaction in the human body, because this is a key factor in the success of potential nanotherapeutics.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 426.1-426
Author(s):  
T. Hügle ◽  
S. Nasi ◽  
D. Ehirchiou ◽  
P. Omoumi ◽  
A. So ◽  
...  

Background:Fibrin(ogen) maintains inflammation in various disorders but has never been linked to cartilage damage in rheumatoid arthritis (RA) or other forms of inflammatory arthritis.Objectives:To investigate the role of fibrin deposition on cartilage integrity in arthritis.Methods:Fibrin deposition on knee cartilage was analyzed by immunohistochemistry in RA patients and in murine adjuvant-induced arthritis (AIA). In chondrocytes, fibrinogen expression (Fgα, Fgβ, Fgγ) and procoagulant activity were evaluated by qRT-PCR and turbidimetry respectively. Fibrin-induced catabolic genes were assessed by qRT-PCR in chondrocytes. Fibrin-mediated chondro-synovial adhesion (CSA) with subsequent cartilage tears was studied in co-cultures of human RA cartilage with autologous synoviocytes, in the AIA model, and by MRI. The link between fibrin and calcification was examined in human RA cartilage stained for calcific deposits and in vitro in fibrinogen-stimulated chondrocytes.Results:Fibrin deposition on cartilage correlated with the severity of cartilage damage in human RA explants and in AIA wildtype (WT) mice, while fibrinogen deficient (Fg-/-) mice were protected. Accordingly, fibrin upregulated catabolic enzymes (Adamts5 and Mmp13) in chondrocytes. Secondly, CSA was present in fibrin-rich and damaged cartilage in AIA WT but not in Fg-/- mice. In line, autologous human synoviocytes, cultured on RA cartilage explants, adhered exclusively to fibrin-positive degraded areas. Gadolinium-enhanced MRI of human joints showed contrast-enhancement along cartilage surface in RA patients but not in controls. Finally, fibrin co-localized with calcification in human RA cartilage and triggered chondrocyte mineralization inducing pro-calcification genes (Anx5, Pit1, Pc1) and cytokine (IL-6). Although at a much lesser extent, we observed similar fibrin-mediated mechanisms in osteoarthritis (OA).Conclusion:Fibrin deposition directly impacts on cartilage integrity via induction of catabolism, mechanical stress, and calcification. Potentially, fibrin is a key factor of cartilage damage occurring in RA as a secondary consequence of inflammation.Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document