Decreased reproductive fitness of Dysdercus koenigii Fabricius (Heteroptera: Pyrrhocoreidae) in response to hexane leaf extract of Ocimum sanctum Linn. (Lamiaceae)

Author(s):  
Sunil Kayesth ◽  
Mohd Shazad ◽  
Shailendra Kumar ◽  
Kamal Kumar Gupta
2018 ◽  
Vol 24 (2) ◽  
Author(s):  
PIYUSH MISHRA ◽  
DEVENDRA KUMAR BHATT

Pasta was prepared by incorporation of Ocimum sanctum (Basil) for better textural and sensory properties. The pasta was incorporated with the leaf extract of Ocimum sanctum at different concentrations of control, 5, 10, and 15.The natural antioxidants present in the O. sanctum leaf powder that was incorporated in the fruit leather showed extended shelf-life over three months when compared with control, without any added preservative at ambient temperature. Also the nutritional stability of the product was studied under two flexible packages of polypropylene and polyester out of that the products packed in polypropylene showed better storage stability .


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Aarth R ◽  
Sudha A P ◽  
Sujatha B ◽  
Sowmya Lakshmi K

The phytosynthesis of n-type Cadmium Oxide Nanoparticles reduces the toxicity of the substance and makes it Eco-friendly. This Eco-friendly biosynthesis of CdO NPs was synthesized for the first time from the Queen of herbs, Ocimum Sanctum (holy basil).The biosynthesized Cadmium oxide was prepared using Ocimum leaf extract as a reductant and Cadmium Chloride and hydroxide as cadmium and oxide source materials by Co- Precipitation method. Thus obtained Cadmium Oxide Nanoparticles were characterized by different techniques such as X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM),Energy dispersive X-ray spectroscopy(EDS) to study the structural and morphological properties. XRD pattern exhibited the formation of face centered cubic structure of CdO NPs with an average crystalline size of 11.5nm .The chemical bond formation of CdO NPs were confirmed by FTIR spectrum in the range of (400-4000cm-1). The SEM micrographs revealed the predominant formation of Cauliflower shape with a particle size in the range of 61-142nm. The high purity of the biosynthesized nanoparticles were confirmed by EDS analysis. Further it was tested against gram positive and gram negative bacterial strains and showed significant antibacterial activity. This biosynthetic research study opens an innovative window to progress our understanding of how CdO NPs shows resistance to different bacterial strains.


2020 ◽  
Vol 10 ◽  
Author(s):  
Amutha Santhanam ◽  
Naveen Kumar Chandrasekharan ◽  
Rajangam Ilangovan

Background: The occurrence of Cancer results in cellular changes that causes the uncontrolled growth and division of cells. Apoptosis removes cells during development and eliminates the potentially cancerous cells. The bioactive compounds present in the herbal plant shows cytotoxic activity that result in apoptosis. The traditional herbal plants are used world-wide both in allopathy and other traditional ways. Objective: The main objective of this study is to extract the bioactive compound Quercetin from the medicinally significant plant Ocimum sanctum and also to develop nanomedicine as Qu-PEG-NiGs. Materials and Methods: Leaf extract of the medicinally significant plant Ocimum sanctum (O. sanctum) has been used for the synthesis of nickel nanoparticles (NiGs) and extraction of quercetin (Qu). The ethanolic extract of Ocimum sanctum is added to 1 mM Nickel Nitrate (Ni(NO3)2) and stirred for 3 hrs at RT and dried at 60°C for 3hrs and calcinated at 400°C for 2hrs and characterized using Uv-Vis Spectrophotometer, FT-IR, SEM, DLS and Zeta potential. The Quercetin is isolated from Ocimum sanctum leaf extract using the reflux condenser method. The bio-polymer is being PEG-coated over NiGs and Quercetin is loaded into it. The apoptosis activity using MCF-7 cells is performed with Qu-PEG-NiGs. The purity of Quercetin is characterized using HPLC. In order to analyse apoptosis efficiency, MTT assay, Reactive Oxygen Species (ROS), Cell cycle analysis has been performed. Results: The NiGs absorption spectrum gives a peak at 408nm. The FT-IR confirms the presence of particular functional groups shifting from the compound NiGs and then coated with PEG-Qu-NiGs. The SEM images show the size of NiGs ranging from 27.3 nm to 40.4 nm with varied morphology such as hexagonal and other irregular shapes. The presence of Quercetin extracted from the leaf powder is approximately 1.5 mg/g. The ROS results show the Qu-PEG-NiGs induced efficiency of the apoptosis, while the increased concentrations promote ROS and lead to activation of the apoptosis. The cell cycle analysis has shown the cytotoxic effect. Conclusion: PEG-coated nickel nanoparticles can be used as a promising chemotherapeutic agent against MCF7 breast cancer cells. It is the evidence to further studies for evaluating Qu-PEG-NiGs anticancer activity on different types of cancer cells.


2011 ◽  
Vol 13 (7) ◽  
pp. 2981-2988 ◽  
Author(s):  
Garima Singhal ◽  
Riju Bhavesh ◽  
Kunal Kasariya ◽  
Ashish Ranjan Sharma ◽  
Rajendra Pal Singh

2007 ◽  
Vol 39 (2) ◽  
pp. 87 ◽  
Author(s):  
S Pemminati ◽  
V Nair ◽  
P Dorababu ◽  
HN Gopalakrishna ◽  
MRSM Pai

2015 ◽  
Vol 8 (5) ◽  
pp. 14-17 ◽  
Author(s):  
Aniket Bhattacharya ◽  
Ashok Aggarwal ◽  
Navnita Sharma ◽  
Jagbeer Cheema

The use herbal medicines for combating with several kinds of health hazards has been traditionally practiced by different human societies since long past. Among the plants known for their therapeutic value, the genus Ocimum, commonly known as ‘Basil’ is very important for its curative potential. In traditional Ayurvedic system mainly the leaves and the seeds of different species of ‘Basil’ were recommended for household remedies from several diseases. Three different species of Ocimum (Ocimum sanctum L., Ocimum basilicum L. and Ocimum canum Sims.) were grown under laboratory condition for analyzing some of their antioxidative constituents using standard methods. The results revealed that the leaf extract of Ocimum canum had the highest amount of carotenoids, phenolics, and flavonoid content than the other two species. Riboflavin and thiamine content also much higher in Ocimum canum, whereas Ocimum sanctum contained highest amount of ascorbic acid. The results obtained in this effort clearly indicate that, the leaves of these three species of ‘Basil’ have strong antioxidative potential, and surely can be used as a cheap source of natural antioxidants.DOI: http://dx.doi.org/10.3126/ijls.v8i5.11858


Sign in / Sign up

Export Citation Format

Share Document