scholarly journals Microbial communities of soda lakes and pans in the Carpathian Basin: a review

2020 ◽  
Vol 71 (4) ◽  
pp. 393-404 ◽  
Author(s):  
Tamás Felföldi

AbstractIn this review, I would like to summarize the current knowledge on the microbiology of soda lakes and pans of the Carpathian Basin. First, the characteristic physical and chemical features of these sites are described. Most of the microbiological information presented deals with prokaryotes and algae, but protists and viruses are also mentioned. Planktonic bacterial communities are dominated by members of the phyla Actinobacteria, Bacteroidetes and Proteobacteria; small-sized trebouxiophycean green algae and Synechococcus/Cyanobium picocyanobacteria are the most important components of phytoplankton. Based on the current knowledge, it seems that mainly temperature, salinity, turbidity and grazing pressure regulate community composition and the abundance of individual microbial groups, but the external nutrient load from birds also has a significant impact on the ecological processes.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Attila Szabó ◽  
Kristóf Korponai ◽  
Boglárka Somogyi ◽  
Balázs Vajna ◽  
Lajos Vörös ◽  
...  

AbstractAstatic soda pans of the Pannonian Steppe are unique environments with respect to their multiple extreme physical and chemical characteristics (high daily water temperature fluctuation, high turbidity, alkaline pH, salinity, polyhumic organic carbon concentration, hypertrophic state and special ionic composition). However, little is known about the seasonal dynamics of the bacterial communities inhabiting these lakes and the role of environmental factors that have the main impact on their structure. Therefore, two soda pans were sampled monthly between April 2013 and July 2014 to reveal changes in the planktonic community. By late spring in both years, a sudden shift in the community structure was observed, the previous algae-associated bacterial communities had collapsed, resulting the highest ratio of Actinobacteria within the bacterioplankton (89%, with the dominance of acIII-A1 lineage) ever reported in the literature. Before these peaks, an extremely high abundance (> 10,000 individuum l−1) of microcrustaceans (Moina brachiata and Arctodiaptomus spinosus) was observed. OTU-based statistical approaches showed that in addition to algal blooms and water-level fluctuations, zooplankton densities had the strongest effect on the composition of bacterial communities. In these extreme environments, this implies a surprisingly strong, community-shaping top-down role of microcrustacean grazers.


Author(s):  
Attila Szabó ◽  
Kristóf Korponai ◽  
Boglárka Somogyi ◽  
Balázs Vajna ◽  
Lajos Vörös ◽  
...  

AbstractAstatic soda pans of the Pannonian Steppe are unique environments with respect to their multiple extreme physical and chemical characteristics (high daily water temperature fluctuation, high turbidity, alkaline pH, salinity, polyhumic organic carbon concentration, hypertrophic state and special ionic composition). However, little is known about the seasonal dynamics of the bacterial communities inhabiting these lakes and the role of environmental factors that have the main impact on their structure. Therefore, two soda pans were sampled monthly between April 2013 and July 2014 to reveal changes in the planktonic community. By late spring in both years, a sudden shift in the community structure was observed, the previous algae-associated bacterial communities had collapsed, resulting the highest ratio of actinobacteria within the bacterioplankton (89%, with the dominance of acIII-A1 lineage) ever reported in the literature. Before these peaks, an extremely high abundance (>10,000 individuum l−1) of microcrustaceans (Moina and Arctodiaptomus) was observed. OTU-based statistical approaches showed that in addition to algal blooms and water-level fluctuations, zooplankton densities had the strongest effect on the composition of bacterial communities. In these extreme environments, this implies a surprisingly strong, community-shaping top-down role of microcrustacean grazers.


2015 ◽  
Vol 75 (4 suppl 1) ◽  
pp. 97-107 ◽  
Author(s):  
E. G. P. Favaro ◽  
L. H. Sipaúba-Tavares ◽  
A. Milstein

Abstract In Southeastern Brazil tilapia culture is conducted in extensive and semi-intensive flow-through earthen ponds, being water availability and flow management different in the rainy and dry seasons. In this region lettuce wastes are a potential cheap input for tilapia culture. This study examined the ecological processes developing during the rainy and dry seasons in three extensive flow-through earthen tilapia ponds fertilized with lettuce wastes. Water quality, plankton and sediment parameters were sampled monthly during a year. Factor analysis was used to identify the ecological processes occurring within the ponds and to construct a conceptual graphic model of the pond ecosystem functioning during the rainy and dry seasons. Processes related to nitrogen cycling presented differences between both seasons while processes related to phosphorus cycling did not. Ecological differences among ponds were due to effects of wind protection by surrounding vegetation, organic loading entering, tilapia density and its grazing pressure on zooplankton. Differences in tilapia growth among ponds were related to stocking density and ecological process affecting tilapia food availability and intraspecific competition. Lettuce wastes addition into the ponds did not produce negative effects, thus this practice may be considered a disposal option and a low-cost input source for tilapia, at least at the amounts applied in this study.


1982 ◽  
Vol 99 ◽  
pp. 87-104 ◽  
Author(s):  
Allan J. Willis

This review summarises current knowledge of the chemical composition of PopI WR stars, concentrating on work carried out in this area since the last IAU, No. 49, symposium devoted to this stellar class (Bappu & Sahade 1973). Earlier reviews of this topic are found in Gebbie & Thomas (1968). The dichotomy of the WR stars into the WN and WC sequences (Beals 1934) has generally been qualitatively interpreted as arising because of gross differences in the C and N abundances: WN stars which exhibit emission lines of predominantly He and N ions with little evidence for C, being inferred as C-poor objects, whilst WC stars, showing predominantly He and C lines and virtually no evidence for N being inferred as N-poor. In both sequences the visible spectra show little or no evidence for hydrogen. However, although the WR stars have been acknowledged as a class for over a century now, progress has been very slow in putting quantitative determinations of their physical and chemical properties on a firm basis, with the bulk of work in this area being conducted during the past decade. The chemical nature of the WR stars has always been a matter of considerable uncertainty, controversy and, quite often, passionate disagreement, arising from uncertainties in the interpretation of the, often ambiguous, observational material available, as well as from disagreements as to the reliability of the use of comparatively simple analytical models employed to date. Recent results strongly suggest that the WR stars are chemically evolved objects, with low H/He ratios and quite different C/N ratios in the WN and WC sequences, with some measure of agreement in these results with the chemistries predicted to arise at various stages of evolutionary theory for hot massive stars which, by one means or another, have shed much of their atmospheric material during their evolution. My purpose in this review is to summarise the investigations and results that lead to the above conclusions. §2 deals with an assessment of the atmospheric H/He ratio in both WN and WC stars: a parameter of fundamental importance in addressing their evolutionary status, as well as providing a base species with which to compare other derived chemical abundances. §3 briefly deals with the models generally employed and gives recent results for He, C and N abundances derived from both visible and UV line analyses. §4 summarises recent results from stellar evolutionary theory and in §5 compares these with those derived from observation, assessing the significance of these new results and their implications for the evolutionary status of the WR stars. Some areas for further advancement are identified.


2020 ◽  
Vol 96 (9) ◽  
Author(s):  
Ragnhild I Vestrum ◽  
Kari J K Attramadal ◽  
Olav Vadstein ◽  
Madeleine Stenshorne Gundersen ◽  
Ingrid Bakke

ABSTRACT Many studies demonstrate the importance of the commensal microbiomes to animal health and development. However, the initial community assembly process is poorly understood. It is unclear to what extent the hosts select for their commensal microbiota, whether stochastic processes contribute, and how environmental conditions affect the community assembly. We investigated community assembly in Atlantic cod larvae exposed to distinct microbial metacommunities. We aimed to quantify ecological processes influencing community assembly in cod larvae and to elucidate the complex relationship between the bacteria of the environment and the fish. Selection within the fish was the major determinant for community assembly, but drift resulted in inter-individual variation. The environmental bacterial communities were highly dissimilar from those associated with the fish. Still, differences in the environmental bacterial communities strongly influenced the fish communities. The most striking difference was an excessive dominance of a single OTU (Arcobacter) for larvae reared in two of the three systems. These larvae were exposed to environments with higher fractions of opportunistic bacteria, and we hypothesise that detrimental host–microbe interactions might have made the fish susceptible to Arcobacter colonisation. Despite strong selection within the host, this points to a possibility to steer the metacommunity towards mutualistic host–microbe interactions and improved fish health and survival.


Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 201 ◽  
Author(s):  
Carlos Rochera ◽  
Antonio Camacho

Here we present a comprehensive review of the diversity revealed by research in limnology and microbial ecology conducted in Byers Peninsula (Livingston Island, South Shetland Islands, Antarctica) during the last two decades. The site constitutes one of the largest ice-free areas within the Antarctic Peninsula region. Since it has a high level of environmental protection, it is less human-impacted compared to other sites within the South Shetland archipelago. The main investigations in Byers Peninsula focused on the physical and chemical limnology of the lakes, ponds, rivers, and wetlands, as well as on the structure of their planktonic and benthic microbial communities, and on the functional ecology of the microbial food webs. Lakes and ponds in Byers range along a productivity gradient that extends from the less productive lakes located upland to the eutrophic coastal lakes. Their planktonic assemblages include viruses, bacteria, a metabolically diverse community of protists (i.e., autotrophs, heterotrophs, and mixotrophs), and a few metazooplankton species. Most of the studies conducted in the site demonstrate the strong influence of the physical environment (i.e., temperature, availability of light, and water) and nutrient availability in structuring these microbial communities. However, top-down biotic processes may occur in summer, when predation by zooplankton can exert a strong influence on the abundance of protists, including flagellates and ciliated protozoa. As a consequence, bacterioplankton could be partly released from the grazing pressure exerted by these protists, and proliferates fueled by external nutrient subsidies from the lake’s catchment. As summer temperatures in this region are slightly above the melting point of water, biotic processes, such as those related to the productivity of lakes during ice-free periods, could become even more relevant as warming induced by climate change progresses. The limnological research carried out at the site proves that Byers Peninsula deserves special attention in the framework of the research in extreme environments. Together with nearby sites, such as Signy Island, Byers Peninsula comprises a featuring element of the Maritime Antarctic region that represents a benchmark area relative to the global distribution and diversity of aquatic microorganisms.


2021 ◽  
Vol 13 (1) ◽  
pp. 397-420
Author(s):  
James E. Byers

Climate change affects ecological processes and interactions, including parasitism. Because parasites are natural components of ecological systems, as well as agents of outbreak and disease-induced mortality, it is important to summarize current knowledge of the sensitivity of parasites to climate and identify how to better predict their responses to it. This need is particularly great in marine systems, where the responses of parasites to climate variables are less well studied than those in other biomes. As examples of climate's influence on parasitism increase, they enable generalizations of expected responses as well as insight into useful study approaches, such as thermal performance curves that compare the vital rates of hosts and parasites when exposed to several temperatures across a gradient. For parasites not killed by rising temperatures, some simple physiological rules, including the tendency of temperature to increase the metabolism of ectotherms and increase oxygen stress on hosts, suggest that parasites’ intensity and pathologies might increase. In addition to temperature, climate-induced changes in dissolved oxygen, ocean acidity, salinity, and host and parasite distributions also affect parasitism and disease, but these factors are much less studied. Finally, because parasites are constituents of ecological communities, we must consider indirect and secondary effects stemming from climate-induced changes in host–parasite interactions, which may not be evident if these interactions are studied in isolation.


Hydrobiologia ◽  
1994 ◽  
Vol 275-276 (1) ◽  
pp. 243-253 ◽  
Author(s):  
Jan Simons ◽  
Marieke Ohm ◽  
Remco Daalder ◽  
Peter Boers ◽  
Winnie Rip

Sign in / Sign up

Export Citation Format

Share Document