Deep learning-based series AC arc detection algorithms

2021 ◽  
Vol 21 (10) ◽  
pp. 1621-1631
Author(s):  
Chang-Ju Park ◽  
Hoang-Long Dang ◽  
Sangshin Kwak ◽  
Seungdeog Choi
2021 ◽  
Vol 11 (5) ◽  
pp. 668
Author(s):  
Sani Saminu ◽  
Guizhi Xu ◽  
Zhang Shuai ◽  
Isselmou Abd El Kader ◽  
Adamu Halilu Jabire ◽  
...  

The benefits of early detection and classification of epileptic seizures in analysis, monitoring and diagnosis for the realization and actualization of computer-aided devices and recent internet of medical things (IoMT) devices can never be overemphasized. The success of these applications largely depends on the accuracy of the detection and classification techniques employed. Several methods have been investigated, proposed and developed over the years. This paper investigates various seizure detection algorithms and classifications in the last decade, including conventional techniques and recent deep learning algorithms. It also discusses epileptiform detection as one of the steps towards advanced diagnoses of disorders of consciousness (DOCs) and their understanding. A performance comparison was carried out on the different algorithms investigated, and their advantages and disadvantages were explored. From our survey, much attention has recently been paid to exploring the efficacy of deep learning algorithms in seizure detection and classification, which are employed in other areas such as image processing and classification. Hybrid deep learning has also been explored, with CNN-RNN being the most popular.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012045
Author(s):  
Chunlei Zhou ◽  
Xiangzhou Chen ◽  
Wenli Liu ◽  
Tianyu Dong ◽  
Huang Yun

Abstract With the increase in the number of traction substations year by year, manual inspections are gradually being replaced by unattended inspections. Target detection algorithms based on deep learning are more widely used in intelligent inspections of power equipment. However, in practical applications, it is found that due to the small target to be detected, the accuracy of the deep learning model will decrease when the shooting angle is inclined and the light conditions are poor. This is because the algorithm’s robustness is low, and the detection ability of the model will be seriously affected when the angle or illumination difference with the sample is large. Based on this, the feature fusion part of the YOLOv3 algorithm and the selection of the loss function and the size of the anchor frame are improved, and the improved ASFF fusion method is used to classify various images in the power equipment. Actual measurement and repeated experiments show that the proposed method can be effectively applied to image recognition of various power equipment, optimize robustness, and greatly improve the image recognition efficiency of power equipment.


Author(s):  
Vibhavari B Rao

The crime rates today can inevitably put a civilian's life in danger. While consistent efforts are being made to alleviate crime, there is also a dire need to create a smart and proactive surveillance system. Our project implements a smart surveillance system that would alert the authorities in real-time when a crime is being committed. During armed robberies and hostage situations, most often, the police cannot reach the place on time to prevent it from happening, owing to the lag in communication between the informants of the crime scene and the police. We propose an object detection model that implements deep learning algorithms to detect objects of violence such as pistols, knives, rifles from video surveillance footage, and in turn send real-time alerts to the authorities. There are a number of object detection algorithms being developed, each being evaluated under the performance metric mAP. On implementing Faster R-CNN with ResNet 101 architecture we found the mAP score to be about 91%. However, the downside to this is the excessive training and inferencing time it incurs. On the other hand, YOLOv5 architecture resulted in a model that performed very well in terms of speed. Its training speed was found to be 0.012 s / image during training but naturally, the accuracy was not as high as Faster R-CNN. With good computer architecture, it can run at about 40 fps. Thus, there is a tradeoff between speed and accuracy and it's important to strike a balance. We use transfer learning to improve accuracy by training the model on our custom dataset. This project can be deployed on any generic CCTV camera by setting up a live RTSP (real-time streaming protocol) and streaming the footage on a laptop or desktop where the deep learning model is being run.


Author(s):  
Emanuele Morra ◽  
Roberto Revetria ◽  
Danilo Pecorino ◽  
Gabriele Galli ◽  
Andrea Mungo ◽  
...  

In the last years, there has been growing a large increase in digital imaging techniques, and their applications became more and more pivotal in many critical scenarios. Conversely, hand in hand with this technological boost, imaging forgeries have increased more and more along with their level of precision. In this view, the use of digital tools, aiming to verify the integrity of a certain image, is essential. Indeed, insurance is a field that extensively uses images for filling claim requests and a robust forgery detection is essential. This paper proposes an approach which aims to introduce a full-automated system for identifying potential splicing frauds in images of car plates by overcoming traditional problems using artificial neural networks (ANN). For instance, classic fraud-detection algorithms are impossible to fully automatize whereas modern deep learning approaches require vast training datasets that are not available most of the time. The method developed in this paper uses Error Level Analysis (ELA) performed on car license plates as an input for a trained model which is able to classify license plates in either original or forged.


2020 ◽  
pp. 147592172094006
Author(s):  
Lingxin Zhang ◽  
Junkai Shen ◽  
Baijie Zhu

Crack is an important indicator for evaluating the damage level of concrete structures. However, traditional crack detection algorithms have complex implementation and weak generalization. The existing crack detection algorithms based on deep learning are mostly window-level algorithms with low pixel precision. In this article, the CrackUnet model based on deep learning is proposed to solve the above problems. First, crack images collected from the lab, earthquake sites, and the Internet are resized, labeled manually, and augmented to make a dataset (1200 subimages with 256 × 256 × 3 resolutions in total). Then, an improved Unet-based method called CrackUnet is proposed for automated pixel-level crack detection. A new loss function named generalized dice loss is adopted to detect cracks more accurately. How the size of the dataset and the depth of the model affect the training time, detecting accuracy, and speed is researched. The proposed methods are evaluated on the test dataset and a previously published dataset. The highest results can reach 91.45%, 88.67%, and 90.04% on test dataset and 98.72%, 92.84%, and 95.44% on CrackForest Dataset for precision, recall, and F1 score, respectively. By comparing the detecting accuracy, the training time, and the information of datasets, CrackUnet model outperform than other methods. Furthermore, six images with complicated noise are used to investigate the robustness and generalization of CrackUnet models.


Agriculture becoming the major driver for Indian economy, applying some of the latest technological digital innovations to solve critical Agri-based challenges are becoming vital to improve the productivity and lower the cost of operations. Primary productivity index of agriculture is directly dependent on how much the crops escaped from attacks either by pests or by external intruders. Applying some of the advanced machine learning techniques in Computer Vision and multiple object detection algorithms in the field of Agriculture surveillance generates huge interest among farmer communities. In this paper, an aapproach which includes deployment of sensors to monitor the whole cultivation area, fixing appropriate cameras and detecting motions in the agro field, is proposed for Agro field surveillance. An orchestrated deployment of necessary sensing devices such as motion-sensing, capturing video based on demand and passes it on to the deep learning algorithms for further synthesis. The model is developed and trained leveraging technologies such as tensorflow, keras with google Colab, Jupyter notebook environment that runs entirely in the google cloud that requires very minimal setup. To evaluate the model, the authors create a test set which contains 200 captured events, more than 60,000 images that are relevant for this scope and available in public to train Deep Learning CNN based models.


2020 ◽  
Vol 28 (S2) ◽  
Author(s):  
Asmida Ismail ◽  
Siti Anom Ahmad ◽  
Azura Che Soh ◽  
Mohd Khair Hassan ◽  
Hazreen Haizi Harith

The object detection system is a computer technology related to image processing and computer vision that detects instances of semantic objects of a certain class in digital images and videos. The system consists of two main processes, which are classification and detection. Once an object instance has been classified and detected, it is possible to obtain further information, including recognizes the specific instance, track the object over an image sequence and extract further information about the object and the scene. This paper presented an analysis performance of deep learning object detector by combining a deep learning Convolutional Neural Network (CNN) for object classification and applies classic object detection algorithms to devise our own deep learning object detector. MiniVGGNet is an architecture network used to train an object classification, and the data used for this purpose was collected from specific indoor environment building. For object detection, sliding windows and image pyramids were used to localize and detect objects at different locations, and non-maxima suppression (NMS) was used to obtain the final bounding box to localize the object location. Based on the experiment result, the percentage of classification accuracy of the network is 80% to 90% and the time for the system to detect the object is less than 15sec/frame. Experimental results show that there are reasonable and efficient to combine classic object detection method with a deep learning classification approach. The performance of this method can work in some specific use cases and effectively solving the problem of the inaccurate classification and detection of typical features.


Sign in / Sign up

Export Citation Format

Share Document