scholarly journals Effects of modifying the hypoeutectic AlMg5Si2Mn alloy via addition of Al10Sr and/or Al5TiB

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
P. Snopiński ◽  
M. Król ◽  
T. Wróbel ◽  
K. Matus ◽  
A. Woźniak ◽  
...  

AbstractThis work demonstrates that the combined addition of Al10Sr and Al5TiB master alloys to the AlMg5Si2Mn effectively refines the grain microstructure and partially modifies the eutectic Mg2Si phase. Thorough spectroscopic characterization reveals that the grain refinement effect is due to Al3Ti particles acting as nucleation sites for α-Al grains, and the increased nucleation temperature of α-Al is due to Al10Sr addition. It is also determined that TiB2 particles can act as nucleation substrates for the primary Mg2Si phase. The prepared alloy sample with the finest microstructure (treated with both Al10Sr and Al5TiB) exhibits the greatest corrosion resistance among all tested samples.

Author(s):  
Xiaoming Wang

Master alloys are routinely added into aluminum melts before casting for grain refinement purposes. The widely used master alloys contain titanium and boron in the forms of Al3Ti and TiB2 particles in an aluminum matrix. Upon addition into aluminum melts, Al3Ti dissolves into the aluminum melts and promotes the heterogeneous nucleation of the α-Al grains while restricting the growth of α-Al grains through a constitutional cooling effect in solidification. Meanwhile, TiB2 is stable and acts as a substrate for the heterogeneous nucleation of α-Al grains through a layer of Al3Ti on the surface. Sharing these in common, different mechanisms for the grain refinement of aluminum by Al-Ti-B-type master alloys have been proposed. Another kind of popular master alloys is Al-Ti-C, which is used in a lesser extent for the grain refinement of Al alloys containing elements that are poisoning Al-Ti-B master alloys. Titanium and carbon exist as Al3Ti and TiC particles. TiC is not as stable as TiB2 and decomposes in aluminum melts. TiC in Al-Ti-C therefore acts as heterogeneous nucleation sites for α-Al grains similar to TiB2. However, the fading of Al-Ti-C master alloys is irreversible, which is the major disadvantage of Al-Ti-C master alloys. Al-Ti master alloys do not contain hard particles and are used industrially for products that are sensitive to hard TiB2 and TiC particles. There are also other master alloys that show high grain refinement potentials in lab tests but have never been used industrially for mainly low-volume production and high costs. This article gives an overview of the grain refinement of aluminum by master alloys with an emphasis on Al-Ti-B master alloys, from the production to the industrial applications of the master alloys.


2012 ◽  
Vol 562-564 ◽  
pp. 238-241
Author(s):  
Z.Q Wang ◽  
D.L Yang ◽  
Z.X Yang ◽  
H.R Geng

In this paper, two types of Zn-Al-Ti-B-C master alloys were produced by a two-step method and were found to have good refinement effect for Zn-50Al alloy. SEM results show that TiC and TiB2 particles act as the nucleating center of α-Al grains in Zn-50Al alloy. The presence of TiAl3-xZnx phase in the matrix of Zn-Al-Ti-B-C master alloy was found to further enhance the refinement effect. The melt thermal-rate treatment process present good grain refinement effect for Zn-50Al alloy and it was further promoted by the addition of Zn-Al-Ti-B-C master alloy into Zn-Al matrix.


2015 ◽  
Vol 816 ◽  
pp. 498-503
Author(s):  
Ren Ju Cheng ◽  
Bo Liu ◽  
Bin Jiang ◽  
Su Qin Luo ◽  
Qing Shan Yang ◽  
...  

In the present work, the influence of Al-Sr and Mg-Sr master alloys on the as-cast microstructure of the AZ31 magnesium alloy was investigated,and the refinement efficiencies of both master alloys were also analyzed and compared. The research results indicate that both the Al-Sr and Mg-Sr master alloys have obvious refinement effect on the as-cast microstructure of the AZ31 magnesium alloy, and the refinement efficiency of the Mg-Sr master alloys was better than that of the Al-Sr master alloys. The mechanisms for the differences of grain refinement efficiency between Al-Sr and Mg-Sr master alloys on the AZ31 magnesium alloys were also discussed.


2012 ◽  
Vol 452-453 ◽  
pp. 778-781 ◽  
Author(s):  
Z.Q. Wang ◽  
H. Wu ◽  
Z.X. Yang ◽  
H.R. Geng

In this paper, we successfully produced Al-Ti-B-C master alloys through adding mixtures of Ti and B4C powders into Al melt. XRD and SEM examinations suggest that only fine TiB2 and TiC particles are formed in the matrix of Al-Ti-B-C master alloy when the Ti/B4C molar ratio is 3/1, while an additional TiAl3 phase is present when the Ti/B4C molar ratio exceeds 3/1. The produced Al-Ti-B-C master alloys exhibited high grain refinement effect for pure Al. It was found that the presence of TiAl3 phase in the matrix of Al-Ti-B-C master alloy enhanced the grain refinement efficiency and the mechanism was discussed.


2012 ◽  
Vol 452-453 ◽  
pp. 339-343 ◽  
Author(s):  
Z.Q. Wang ◽  
W.J. Li ◽  
Z.X. Yang ◽  
H.R. Geng ◽  
W.H. Wang ◽  
...  

In this paper, two types of Zn-Al-Ti-C master alloy with different Ti/C ratios were produced throug a two-step method, characterized by XRD and SEM, and their refinement behaviors and mechanism in Zn-50Al alloy were studied. Both of the master alloys remarkably reduced the size of α-Al grains, impeded the dendritic growth and promote the equiaxed growth of α-Al grains in Zn-50wt.%Al alloy. The master alloy containing both TiC and dditional Ti in the Zn-Al matrix was found to have higher refinement ability than that containg only TiC. The refinement effect of both master alloys was greatly enhanced as the solidification temperature of Zn-50Al melt decreases. TiC particles were observed to be located at the center of α-Al grains and act as the nucleating substrate for α-Al. The decrease of melt solidification temperature and the presence of additional Ti atoms in the Zn-50Al melt cause higher melt supercooling, which further elevate the nucleating rate of α-Al grains on TiC particles and promote the equiaxed growth of α-Al grains.


Author(s):  
Wenxue Fan ◽  
Hai Hao

Abstract Grain refinement has a significant influence on the improvement of mechanical properties of magnesium alloys. In this study, a series of Al–Ti–C-xGd (x = 0, 1, 2, 3) master alloys as grain refiners were prepared by self-propagating high-temperature synthesis. The synthesis mechanism of the Al–Ti–C-xGd master alloy was analyzed. The effects of Al–Ti–C-xGd master alloys on the grain refinement and mechanical properties of AZ31 (Mg-3Al-1Zn-0.4Mn) magnesium alloys were investigated. The results show that the microstructure of the Al–Ti–C-xGd alloy contains α-Al, TiAl3, TiC and the core–shell structure TiAl3/Ti2Al20Gd. The refining effect of the prepared Al–Ti–C–Gd master alloy is obviously better than that of Al–Ti–C master alloy. The grain size of AZ31 magnesium alloy was reduced from 323 μm to 72 μm when adding 1 wt.% Al–Ti–C-2Gd master alloy. In the same condition, the ultimate tensile strength and elongation of as-cast alloy were increased from 130 MPa, 7.9% to 207 MPa, 16.6% respectively.


Author(s):  
Chandrasekhara Sastry Chebiyyam ◽  
Pradeep N ◽  
Shaik AM ◽  
Hafeezur Rahman A ◽  
Sandeep Patil

Abstract Nano composite coatings on HSLA ASTM A860 alloy, adds to the barrier efficacy by increase in the microhardness, wear and corrosion resistance of the substrate material. Additionally, reduction of delamination of the nano composite coating sample is ascertained. Ball milling is availed to curtail the coating samples (Al2O3/ZrO2) to nano size, for forming a electrodeposited product on the substrate layer. The curtailment in grain size was ascertained to be 17.62% in Ni-Al2O3/ZrO2 nano composite coating. During the deposition process, due to the presence of Al2O3/ZrO2 nano particles an increase in cathode efficiency is ascertained. An XRD analysis of the nano composite coating indicates a curtailment in grain size along with increase in the nucleation sites causing a surge in the growth of nano coating layer. In correlation to uncoated HSLA ASTM A36 alloy sample, a surge in compressive residual stress by 47.14%, reduction of waviness by 32.14% (AFM analysis), upsurge in microhardness by 67.77% is ascertained in Ni-Al2O3/ZrO2 nano composite coating. Furthermore, in nano coated Ni-Al2O3/ZrO2 composite a reduction is observed pertaining to weight loss and friction coefficients by 27.44% and 13% in correlation to plain uncoated alloy respectively. A morphology analysis after nano coating indicates, Ni-Al2O3/ZrO2 particles occupy the areas of micro holes, reducing the wide gaps and crevice points inside the matrix of the substrate, enacting as a physical barrier to upsurge the corrosion resistance by 67.72% in correlation to HSLA ASTM A860 base alloy.


2008 ◽  
Vol 461 (1-2) ◽  
pp. 298-303 ◽  
Author(s):  
Mingbo Yang ◽  
Fusheng Pan ◽  
Renju Cheng ◽  
Aitao Tang

Sign in / Sign up

Export Citation Format

Share Document