scholarly journals FgRab5 and FgRab7 are essential for endosomes biogenesis and non-redundantly recruit the retromer complex to the endosomes in Fusarium graminearum

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Yakubu Saddeeq Abubakar ◽  
Han Qiu ◽  
Wenqin Fang ◽  
Huawei Zheng ◽  
Guodong Lu ◽  
...  

AbstractThe retromer complex, composed of the cargo-selective complex (CSC) Vps35-Vps29-Vps26 in complex with the sorting nexin dimer Vps5-Vps17, mediates the sorting and retrograde transport of cargo proteins from the endosomes to the trans-Golgi network in eukaryotic cells. Rab proteins belong to the Ras superfamily of small GTPases and regulate many trafficking events including vesicle formation, budding, transport, tethering, docking and fusion with target membranes. Herein, we investigated the potential functional relationship between the retromer complex and the 11 Rab proteins that exist in Fusarium graminearum using genetic and high-resolution laser confocal microscopic approaches. We found that only FgRab5 (FgRab5A and FgRab5B) and FgRab7 associate with the retromer complex. Both FgVps35-GFP and FgVps17-GFP are mis-localized and appear diffused in the cytoplasm of ΔFgrab5A, ΔFgrab5B and ΔFgrab7 mutants as compared to their punctate localization within the endosomes of the wild-type. FgRab7 and FgRab5B were found to co-localize with the retromer on endosomal membranes. Most strikingly, we found that these three Rab GTPases are indispensable for endosome biogenesis as both early and late endosomes could not be detected in the cells of the mutants after FM4-64 staining of the cells, while they were very clearly seen in the wild-type PH-1. Furthermore, FgRab7 was found to recruit FgVps35 but not FgVps17 to the endosomal membranes, whereas FgRab5B recruits both FgVps35 and FgVps17 to the membranes. Thus, we conclude that the Rab proteins FgRab5A, FgRab5B and FgRab7 play critical roles in the biogenesis of endosomes and in regulating retromer-mediated trafficking in F. graminearum.

2006 ◽  
Vol 72 (6) ◽  
pp. 3924-3932 ◽  
Author(s):  
Erik Lys�e ◽  
Sonja S. Klemsdal ◽  
Karen R. Bone ◽  
Rasmus J. N. Frandsen ◽  
Thomas Johansen ◽  
...  

ABSTRACT Zearalenones are produced by several Fusarium species and can cause reproductive problems in animals. Some aurofusarin mutants of Fusarium pseudograminearum produce elevated levels of zearalenone (ZON), one of the estrogenic mycotoxins comprising the zearalenones. An analysis of transcripts from polyketide synthase genes identified in the Fusarium graminearum database was carried out for these mutants. PKS4 was the only gene with an enoyl reductase domain that had a higher level of transcription in the aurofusarin mutants than in the wild type. An Agrobacterium tumefaciens-mediated transformation protocol was used to replace the central part of the PKS4 gene with a hygB resistance gene through double homologous recombination in an F. graminearum strain producing a high level of ZON. PCR and Southern analysis of transformants were used to identify isolates with single insertional replacements of PKS4. High-performance liquid chromatography analysis showed that the PKS4 replacement mutant did not produce ZON. Thus, PKS4 encodes an enzyme required for the production of ZON in F. graminearum. Barley root infection studies revealed no alteration in the pathogenicity of the PKS4 mutant compared to the pathogenicity of the wild type. The expression of PKS13, which is located in the same cluster as PKS4, decreased dramatically in the mutant, while transcription of PKS4 was unchanged. This differential expression may indicate that ZON or its derivatives do not regulate expression of PKS4 and that the PKS4-encoded protein or its product stimulates expression of PKS13. Furthermore, both the lack of aurofusarin and ZON influenced the expression of other polyketide synthases, demonstrating that one polyketide can influence the expression of others.


2021 ◽  
Author(s):  
Sarah D Neuman ◽  
Annika R Lee ◽  
Jane E Selegue ◽  
Amy T Cavanagh ◽  
Arash Bashirullah

Regulated exocytosis is an essential process whereby professional secretory cells synthesize and secrete specific cargo proteins in a stimulus-dependent manner. Cargo-containing secretory granules are synthesized in the trans-Golgi Network (TGN); after budding from the TGN, granules undergo many modifications, including a dramatic increase in size. These changes occur during a poorly understood process called secretory granule maturation. Here we leverage the professional secretory cells of the Drosophila larval salivary glands as a model system to characterize a novel and unexpected role for Rab GTPases during secretory granule maturation. We find that secretory granules in the larval salivary glands increase in size ~300-fold between biogenesis and release, and loss of Rab1 or Rab11 dramatically reduces granule size. Surprisingly, we find that Rab1 and Rab11 protein localize to secretory granule membranes. Rab11 associates with granule membranes throughout the maturation process, and Rab11 is required for recruitment of Rab1. In turn, Rab1 associates specifically with immature secretory granules and drives granule growth. In addition to their roles in granule growth, both Rab1 and Rab11 appear to have additional roles during exocytosis; Rab11 function is necessary for exocytosis, while the presence of Rab1 on immature granules may prevent precocious exocytosis. Overall, these results highlight a new and unexpected role for Rab GTPases in secretory granule maturation.


Microbiology ◽  
2011 ◽  
Vol 157 (6) ◽  
pp. 1665-1675 ◽  
Author(s):  
Xin Liu ◽  
Jing Fu ◽  
Yingzi Yun ◽  
Yanni Yin ◽  
Zhonghua Ma

Fusarium graminearum, the causal agent of wheat head blight, shows intrinsic resistance to amine fungicides. It is commonly accepted that the amines target sterol C-14 reductase and sterol Δ8–Δ7 isomerase of ergosterol biosynthesis, encoded by the genes ERG24 and ERG2, respectively. Analysis of the genome sequence of F. graminearum revealed that the fungus contains two paralogous FgERG24 genes (FgERG24A and FgERG24B), which are homologous to the ERG24 of Saccharomyces cerevisiae. In this study, we disrupted FgERG24A and FgERG24B in F. graminearum. Compared to the wild-type strain HN9-1, FgERG24A and FgERG24B deletion mutants did not show recognizable phenotypic changes in mycelial growth on potato dextrose agar or in virulence on wheat heads. HPLC analysis showed that the amount of ergosterol in FgERG24A or FgERG24B deletion mutants was not significantly different from that in the wild-type strain. These results indicate that neither of the two genes is essential for growth, pathogenicity or ergosterol biosynthesis in F. graminearum. FgERG24B deletion mutants exhibited significantly increased sensitivity to amine fungicides, including tridemorph, fenpropidin and spiroxamine, but not to non-amine fungicides. In contrast, FgERG24A deletion mutants did not show changed sensitivity to any amine tested. The resistance of the FgERG24B deletion mutant to amines was restored by genetic complementation of the mutant with wild-type FgERG24B. These results indicate that FgERG24B controls the intrinsic resistance of F. graminearum to amines. The finding of this study provides new insights into amine resistance in filamentous fungi.


2011 ◽  
Vol 39 (5) ◽  
pp. 1202-1206 ◽  
Author(s):  
Conor P. Horgan ◽  
Mary W. McCaffrey

Rab proteins are a family of small GTPases which, since their initial identification in the late 1980s, have emerged as master regulators of all stages of intracellular trafficking processes in eukaryotic cells. Rabs cycle between distinct conformations that are dependent on their guanine-nucleotide-bound status. When active (GTP-bound), Rabs are distributed to the cytosolic face of specific membranous compartments where they recruit downstream effector proteins. Rab–effector complexes then execute precise intracellular trafficking steps, which, in many cases, include vesicle motility. Microtubule-based kinesin and cytoplasmic dynein motor complexes are prominent among the classes of known Rab effector proteins. Additionally, many Rabs associate with microtubule-based motors via effectors that act as adaptor molecules that can simultaneously associate with the GTP-bound Rab and specific motor complexes. Thus, through association with motor complexes, Rab proteins can allow for membrane association and directional movement of various vesicular cargos along the microtubule cytoskeleton. In this mini-review, we highlight the expanding repertoire of Rab/microtubule motor protein interactions, and, in doing so, present an outline of the multiplicity of transport processes which result from such interactions.


1995 ◽  
Vol 131 (3) ◽  
pp. 583-590 ◽  
Author(s):  
G Jedd ◽  
C Richardson ◽  
R Litt ◽  
N Segev

Small GTPases of the rab family are involved in the regulation of vesicular transport. The restricted distribution of each of these proteins in mammalian cells has led to the suggestion that different rab proteins act at different steps of transport (Pryer, N. K., L. J. Wuestehube, and R. Sheckman. 1992. Annu Rev. Biochem. 61:471-516; Zerial, M., and H. Stenmark. 1993. Curr. Opin. Cell Biol. 5:613-620). However, in this report we show that the Ypt1-GTPase, a member of the rab family, is essential for more than one step of the yeast secretory pathway. We determined the secretory defect conferred by a novel ypt1 mutation by comparing the processing of several transported glycoproteins in wild-type and mutant cells. The ypt1-A136D mutant has a change in an amino acid that is conserved among rab GTPases. This mutation leads to a rapid and tight secretory block upon a shift to the restrictive temperature, and allows for the identification of the specific steps in the secretory pathway that directly require Ypt1 protein (Ypt1p). The ypt1-A136D mutant exhibits tight blocks in two secretory steps, ER to cis-Golgi and cis- to medial-Golgi, but later steps are unaffected. Thus, it is unlikely that Ypt1p functions as the sole determinant of fusion specificity. Our results are more consistent with a role for Ypt1/rab proteins in determining the directionality or fidelity of protein sorting.


2008 ◽  
Vol 415 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Rudi A. Baron ◽  
Miguel C. Seabra

Prenylation (or geranylgeranylation) of Rab GTPases is catalysed by RGGT (Rab geranylgeranyl transferase) and requires REP (Rab escort protein). In the classical pathway, REP associates first with unprenylated Rab, which is then prenylated by RGGT. In the alternative pathway, REP associates first with RGGT; this complex then binds and prenylates Rab proteins. In the present paper we show that REP mutants defective in RGGT binding (REP1 F282L and REP1 F282L/V290F) are unable to compete with wild-type REP in the prenylation reaction in vitro. When over-expressed in cells, REP wild-type and mutants are unable to form stable cytosolic complexes with endogenous unprenylated Rabs. These results suggest that the alternative pathway may predominate in vivo. We also extend previous suggestions that GGPP (geranylgeranyl pyrophosphate) acts as an allosteric regulator of the prenylation reaction. We observed that REP–RGGT complexes are formed in vivo and are unstable in the absence of intracellular GGPP. RGGT increases the ability of REP to extract endogenous prenylated Rabs from membranes in vitro by stabilizing a soluble REP–RGGT–Rab-GG (geranylgeranylated Rab) complex. This effect is regulated by GGPP, which promotes the dissociation of RGGT and REP–Rab-GG to allow delivery of prenylated Rabs to membranes.


2005 ◽  
Vol 16 (4) ◽  
pp. 1640-1650 ◽  
Author(s):  
Marion L. Chabrillat ◽  
Claire Wilhelm ◽  
Christina Wasmeier ◽  
Elena V. Sviderskaya ◽  
Daniel Louvard ◽  
...  

Rab GTPases have been implicated in the regulation of specific microtubule- and actin-based motor proteins. We devised an in vitro motility assay reconstituting the movement of melanosomes on actin bundles in the presence of ATP to investigate the role of Rab proteins in the actin-dependent movement of melanosomes. Using this assay, we confirmed that Rab27 is required for the actin-dependent movement of melanosomes, and we showed that a second Rab protein, Rab8, also regulates this movement. Rab8 was partially associated with mature melanosomes. Expression of Rab8Q67L perturbed the cellular distribution and increased the frequency of microtubule-independent movement of melanosomes in vivo. Furthermore, anti-Rab8 antibodies decreased the number of melanosomes moving in vitro on actin bundles, whereas melanosomes isolated from cells expressing Rab8Q67L exhibited 70% more movements than wild-type melanosomes. Together, our observations suggest that Rab8 is involved in regulating the actin-dependent movement of melanosomes.


2005 ◽  
Vol 33 (4) ◽  
pp. 652-656 ◽  
Author(s):  
B.R. Ali ◽  
M.C. Seabra

Rab proteins are members of the superfamily of Ras-like small GTPases and are involved in several cellular processes relating to membrane trafficking and organelle mobility throughout the cell. Like other small GTPases, Rab proteins are initially synthesized as soluble proteins and for membrane attachment they require the addition of lipid moiety(ies) to specific residues of their polypeptide chain. Despite their well-documented roles in regulating cellular trafficking, Rab proteins own trafficking is still poorly understood. We still need to elucidate the molecular mechanisms of their recruitment to cellular membranes and the structural determinants for their specific cellular localization. Recent results indicate that Rab cellular targeting might be Rab-dependent, and this paper briefly reviews our current knowledge of this process.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 909 ◽  
Author(s):  
Noemi Antonella Guadagno ◽  
Cinzia Progida

Rab proteins compose the largest family of small GTPases and control the different steps of intracellular membrane traffic. More recently, they have been shown to also regulate cell signaling, division, survival, and migration. The regulation of these processes generally occurs through recruitment of effectors and regulatory proteins, which control the association of Rab proteins to membranes and their activation state. Alterations in Rab proteins and their effectors are associated with multiple human diseases, including neurodegeneration, cancer, and infections. This review provides an overview of how the dysregulation of Rab-mediated functions and membrane trafficking contributes to these disorders. Understanding the altered dynamics of Rabs and intracellular transport defects might thus shed new light on potential therapeutic strategies.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1145-1145
Author(s):  
Ramesh C Nayak ◽  
Shiva Keshava ◽  
Usha Pendurthi ◽  
L. Vijaya Mohan Rao

Abstract Abstract 1145 Recent studies from our laboratory and others showed that endothelial cell protein C receptor (EPCR), the cellular receptor for protein C and activated protein C (APC), also serves as a receptor for factor VII (FVII) and activated factor VII (FVIIa). At present, the physiological importance of FVII/FVIIa binding to EPCR is largely unknown, but this interaction may play a role in the clearance or transport of FVII/FVIIa from circulation to tissues. Our recent studies showed that FVIIa (or APC) binding to EPCR promoted the endocytosis of EPCR via dynamin and caveolar-dependent pathways, and the endocytosed receptor-ligand complexes were accumulated in the recycling compartment (REC) before being targeted back to the cell surface (Blood 2009;114:1974-1986). Rab GTPases (Rab 4, Rab 5, Rab 7 and Rab 11 etc.), which localize to specific endosomal structures, have been shown to play crucial roles in the endocytic and exocytic pathways of receptor or receptor/ligand complexes. The role of these Ras-like small GTPases is unknown in endocytosis and trafficking of EPCR and EPCR/FVIIa complexes. The present study was undertaken in order to investigate the role of different Rab GTPases (Rab 4A, Rab 5 and Rab11) in the intracellular trafficking of EPCR and internalized FVIIa in endothelial cells. For this, we examined the effect of expressing wild-type (wt) or mutant Rab proteins on the intracellular distribution of FVIIa in human umbilical vein endothelial cells (HUVEC). The wild-type, constitutively active and dominant negative mutants of Rab 4A, Rab 5 and Rab 11 were cloned in adenoviral shuttle vector pacAd5 K-N pA CMV and the recombinant adenoviruses expressing these Rab GTPase variants were generated in human embryonic kidney (HEK) cells. HUVEC were infected with recombinant adenoviruses encoding for the wild-type, active or dominant negative mutant of Rab 4A, Rab 5 and Rab 11 (25 moi/cell). After culturing the cells for 24 h, they were incubated with recombinant FVIIa conjugated with Alexa fluor 488 fluorescent dye (AF488-FVIIa) for 1 h at 37°C. The intracellular distribution of FVIIa was analyzed by monitoring the fluorescence of AF488-FVIIa by confocal microscopy. The intracellular distribution of EPCR and Rab proteins was evaluated by confocal microscopy after immunofluorescence staining. Expression of Rab 4A wt or constitutively active Rab 4A (Q67L) forms led to accumulation of AF488-FVIIa within the Rab 4A positive early/sorting endosomes, whereas FVIIa accumulation in the REC was inhibited. In cells expressing Rab 4A dominant negative form (S22N), FVIIa was trafficked normally and accumulated in the REC. Rab 4A is known to regulate fusion of early and sorting endosomes, as well as recycling of the internalized receptor or receptor/ligand complexes from early/sorting endosomes back to the cell surface. Increased accumulation of FVIIa in early/sorting endosomes but a decrease in REC in HUVEC transduced to express wt and constitutively active Rab 4A, suggests that Rab 4A plays a role in the transport of internalized FVIIa and FVIIa-EPCR complexes from sorting endosomes back to the cell surface. HUVEC expressing Rab 5 wt or active mutant (Q79L) showed larger endosomal structures beneath the plasma membrane where EPCR and FVIIa were accumulated; very little FVIIa entered the REC. The trafficking of internalized FVIIa remained unaffected in HUVEC expressing Rab 5A dominant negative form (S34N). As Rab 5 is known to induce receptor internalization and fusion between early endosomes, the large endosomal structures containing AF488-FVIIa found in HUVEC expressing wt or constitutively active form but not in cells expressing the dominant negative form suggests that Rab 5 facilitates internalization of FVIIa-EPCR complexes. In contrast to the data obtained in HUVEC expressing Rab 4A and Rab 5, the intracellular trafficking of AF488-FVIIa remained unaffected in HUVEC expressing either wt or constitutively active Rab 11 mutant. Rab 11 dominant negative mutant (S34N) prevented the entry of AF488-FVIIa into REC. The observation that the dominant negative form of Rab 11 inhibits the entry of internalized FVIIa to the REC indicates that the activation of Rab 11 by GTP is required for the transport of FVIIa from sorting endosomes toward the recycling compartment. Overall our present data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR and internalized FVIIa in endothelial cells. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document