Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: An interpretation of the lyotropic series

1977 ◽  
Vol 183 (1) ◽  
pp. 200-215 ◽  
Author(s):  
Wayne Melander ◽  
Csaba Horváth
1977 ◽  
Vol 55 (23) ◽  
pp. 4018-4027 ◽  
Author(s):  
Robert Aveyard ◽  
Syed M. Saleem

An approach to the study of the influence of electrolytes on adsorbed nonelectrolytes at liquid surfaces is described. The adsorption of tetrabutylammonium bromide (Bu4NBr) from aqueous solution to the interfaces with octane, decanol, and air has been determined. Results are presented for the effects of some inorganic salts (NaCl, NH4Br, and Na2CO3), and of Bu4NBr on monolayers of butanol at the air – aqueous solution interface, and of Bu4NBr on dodecanol adsorbed at the octane – aqueous solution interface. The interfacial salt effects differ from the bulk effects in the cases studied. The inorganic salts, which salt-out butanol (and alkanols generally) in aqueous solution, have little or no effect on adsorbed butanol. On the other hand, Bu4NBr which salts-in alkanols in bulk aqueous solution has a strong salting-out effect on dodecanol at the liquid–liquid interface; a similar but less marked effect is observed for butanol at the liquid–vapour surface. Salting-in of alkanols by Bu4NBr in bulk has previously been ascribed to hydrophobic interactions between cations and alkyl groups of the alkanol, whereas the surface effect is assumed to result from interactions between alcoholic OH groups and cations.


2020 ◽  
Author(s):  
Sean A. Newmister ◽  
Kinshuk Raj Srivastava ◽  
Rosa V. Espinoza ◽  
Kersti Caddell Haatveit ◽  
Yogan Khatri ◽  
...  

Biocatalysis offers an expanding and powerful strategy to construct and diversify complex molecules by C-H bond functionalization. Due to their high selectivity, enzymes have become an essential tool for C-H bond functionalization and offer complementary reactivity to small-molecule catalysts. Hemoproteins, particularly cytochromes P450, have proven effective for selective oxidation of unactivated C-H bonds. Previously, we reported the in vitro characterization of an oxidative tailoring cascade in which TamI, a multifunctional P450 functions co-dependently with the TamL flavoprotein to catalyze regio- and stereoselective hydroxylations and epoxidation to yield tirandamycin A and tirandamycin B. TamI follows a defined order including 1) C10 hydroxylation, 2) C11/C12 epoxidation, and 3) C18 hydroxylation. Here we present a structural, biochemical, and computational investigation of TamI to understand the molecular basis of its substrate binding, diverse reactivity, and specific reaction sequence. The crystal structure of TamI in complex with tirandamycin C together with molecular dynamics simulations and targeted mutagenesis suggest that hydrophobic interactions with the polyene chain of its natural substrate are critical for molecular recognition. QM/MM calculations and molecular dynamics simulations of TamI with variant substrates provided detailed information on the molecular basis of sequential reactivity, and pattern of regio- and stereo-selectivity in catalyzing the three-step oxidative cascade.<br>


2019 ◽  
Author(s):  
Zichen Wang ◽  
Huaxun Fan ◽  
Xiao Hu ◽  
John Khamo ◽  
Jiajie Diao ◽  
...  

<p>The receptor tyrosine kinase family transmits signals into cell via a single transmembrane helix and a flexible juxtamembrane domain (JMD). Membrane dynamics makes it challenging to study the structural mechanism of receptor activation experimentally. In this study, we employ all-atom molecular dynamics with Highly Mobile Membrane-Mimetic to capture membrane interactions with the JMD of tropomyosin receptor kinase A (TrkA). We find that PIP<sub>2 </sub>lipids engage in lasting binding to multiple basic residues and compete with salt bridge within the peptide. We discover three residues insertion into the membrane, and perturb it through computationally designed point mutations. Single-molecule experiments indicate the contribution from hydrophobic insertion is comparable to electrostatic binding, and in-cell experiments show that enhanced TrkA-JMD insertion promotes receptor ubiquitination. Our joint work points to a scenario where basic and hydrophobic residues on disordered domains interact with lipid headgroups and tails, respectively, to restrain flexibility and potentially modulate protein function.</p>


2020 ◽  
Vol 10 ◽  
Author(s):  
Sonika Arti ◽  
Neha Aggarwal

Aim: The micellization behavior of cationic surfactants have been studied in the presence of food additives. Objectives: Micellization behaviour of cationic surfactants, cetyltrimethylammonium bromide (CTAB) and tetradecyltrimethylammonium bromide (TTAB) has been studied in water and in various concentrations of salts (food additives) L-glutamic acid, sodium propionate, sodium citrate tribasic dihydrate and disodium tartrate dihydrate at (298.15, 308.15 and 318.15) K. Methods: Two methods used in the present study are specific conductance measurements and spectroscopy (NMR) studies. Results: From the specific conductance(κ), various parameters such as critical micelle concentration (CMC), degree of ionization of micelle (α), standard Gibbs free energy (ΔGom), enthalpy (ΔHom), and entropy (ΔSom) of micellization have also been calculated. Thermodynamic parameters related to the micellization process were also analyzed through NMR studies. Conclusion: The CMC values are influenced by the presence of food additive. The magnitude of CMC values increase with increase in concentration of food additive. In all the cases, enthalpy of micellization, ∆Hom values are found to be negative whereas entropy of micellization, ∆S om values are positive which indicate that hydrophobic interactions play a major role in the micellization process. Also, NMR studies reveal that tartrate and citrate are more hydrated than glutamic acid and propionate, resulting in more downfield shift.


1986 ◽  
Vol 51 (12) ◽  
pp. 2781-2785 ◽  
Author(s):  
M. Martín Herrera ◽  
J. J. Maraver Puig ◽  
F. Sánchez Burgos

A study is made on the kinetic salt effect on the reaction of hydrolysis of several charged esters in alkaline media. The results are interpreted on the basis of the coulombic interaction, the salting in of hydroxide ion and a third component depending on size of the substrate.


Sign in / Sign up

Export Citation Format

Share Document